数据结构实验课:实验五、二叉树操作及应用

简介: 数据结构实验课:实验五、二叉树操作及应用

实验五、二叉树操作及应用


一、 实验目的


掌握二叉树的定义、结构特征,以及各种存储结构的特点及使用范围,各种遍历算法。掌握用指针类型描述、访问和处理二叉树的运算。掌握前序或中序的非递归遍历算法。


二、 实验要求


有如下二叉树:


程序代码给出了该二叉树的链式存储结构的建立、前序、中序、后序遍历的算法,同时也给出了查询“E”是否在二叉树里的代码。代码有三处错误,有标识,属于逻辑错误,对照书中的代码仔细分析后,请修改了在电脑里运行。


#include <stdlib.h>
#include <stdio.h>
typedef char DataType;
typedef struct Node
{
DataType data;/数据域/
struct Node *leftChild;/左子树指针/
struct Node *rightChild;/右子树指针/
}BiTreeNode;/结点的结构体定义/
/初始化创建二叉树的头结点/
void Initiate(BiTreeNode **root)
{
*root = (BiTreeNode *)malloc(sizeof(BiTreeNode));
(*root)->leftChild = NULL;
(*root)->rightChild = NULL;
}
void Destroy(BiTreeNode **root)
{
if((*root) != NULL && (*root)->leftChild != NULL)
Destroy(&(*root)->leftChild);
if((*root) != NULL && (*root)->rightChild != NULL)
Destroy(&(*root)->rightChild);
free(*root);
}
/若当前结点curr非空,在curr的左子树插入元素值为x的新结点/
/原curr所指结点的左子树成为新插入结点的左子树/
/若插入成功返回新插入结点的指针,否则返回空指针/
BiTreeNode *InsertLeftNode(BiTreeNode *curr, DataType x)
{
BiTreeNode *s, *t;
if(curr == NULL) return NULL;
t = curr->leftChild;/保存原curr所指结点的左子树指针/
s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
s->data = x;
s->leftChild = t;/新插入结点的左子树为原curr的左子树/
s->rightChild = NULL;
curr->leftChild = s;/新结点成为curr的左子树/
return curr->leftChild;/返回新插入结点的指针/
}
/若当前结点curr非空,在curr的右子树插入元素值为x的新结点/
/原curr所指结点的右子树成为新插入结点的右子树/
/若插入成功返回新插入结点的指针,否则返回空指针/
BiTreeNode *InsertRightNode(BiTreeNode *curr, DataType x)
{
BiTreeNode *s, *t;
if(curr == NULL) return NULL;
t = curr->rightChild;/保存原curr所指结点的右子树指针/
s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
s->data = x;
s->rightChild = t;/新插入结点的右子树为原curr的右子树/
s->leftChild = NULL;
curr->rightChild = s;/新结点成为curr的右子树/
return curr->rightChild;/返回新插入结点的指针/
}
void PreOrder(BiTreeNode *t, void visit(DataType item))
//使用visit(item)函数前序遍历二叉树t
{
if(t != NULL)
{//此小段有一处错误
visit(t->data);
PreOrder(t-> rightChild, visit);
PreOrder(t-> leftChild, visit);
}
}
void InOrder(BiTreeNode *t, void visit(DataType item))
//使用visit(item)函数中序遍历二叉树t
{
if(t != NULL)
{//此小段有一处错误
InOrder(t->leftChild, visit);
InOrder(t->rightChild, visit);
visit(t->data);
}
}
void PostOrder(BiTreeNode *t, void visit(DataType item))
//使用visit(item)函数后序遍历二叉树t
{
if(t != NULL)
{//此小段有一处错误
visit(t->data);
PostOrder(t->leftChild, visit);
PostOrder(t->rightChild, visit);
}
}
void Visit(DataType item)
{
printf("%c ", item);
}
BiTreeNode *Search(BiTreeNode *root, DataType x)//需找元素x是否在二叉树中
{
BiTreeNode *find=NULL;
if(root!=NULL)
{
if(root->data == x)
find=root;
else
{
find=Search(root->leftChild,x);
if(find==NULL)
find=Search(root->rightChild,x);
}
}
return find;
}
void main(void)
{
BiTreeNode *root, *p, *pp,*find;
char x=‘E’;
Initiate(&root);
p = InsertLeftNode(root, ‘A’);
p = InsertLeftNode(p, ‘B’);
p = InsertLeftNode(p, ‘D’);
p = InsertRightNode(p, ‘G’);
p = InsertRightNode(root->leftChild, ‘C’);
pp = p;
InsertLeftNode(p, ‘E’);
InsertRightNode(pp, ‘F’);
printf(“前序遍历:”);
PreOrder(root->leftChild, Visit);
printf("\n中序遍历:");
InOrder(root->leftChild, Visit);
printf("\n后序遍历:");
PostOrder(root->leftChild, Visit);
find=Search(root,x);
if(find!=NULL)
printf("\n数据元素%c在二叉树中 \n",x);
else
printf("\n数据元素%c不在二叉树中 \n",x);
Destroy(&root);
}


三、 实验任务:


1.改正程序错误。

2.编写二叉树的前序(或中序)的非递归遍历算法并进行测试。


20210519230440135.png


#include
using namespace std;
stack s;
BiTreeNode *p;
s.push§;
s.top();
s.pop();
s.empty()_


3.完成实验报告的撰写。


代码如下


#include <stdlib.h>
#include <stdio.h>
typedef char DataType;
typedef struct Node
{
    DataType data;/*数据域*/
    struct Node *leftChild;/*左子树指针*/
    struct Node *rightChild;/*右子树指针*/
} BiTreeNode; /*结点的结构体定义*/
/*初始化创建二叉树的头结点*/
void Initiate(BiTreeNode **root)
{
    *root = (BiTreeNode *)malloc(sizeof(BiTreeNode));
    (*root)->leftChild = NULL;
    (*root)->rightChild = NULL;
}
void Destroy(BiTreeNode **root)
{
    if((*root) != NULL && (*root)->leftChild != NULL)
        Destroy(&(*root)->leftChild);
    if((*root) != NULL && (*root)->rightChild != NULL)
        Destroy(&(*root)->rightChild);
    free(*root);
}
/*若当前结点curr非空,在curr的左子树插入元素值为x的新结点*/
/*原curr所指结点的左子树成为新插入结点的左子树*/
/*若插入成功返回新插入结点的指针,否则返回空指针*/
BiTreeNode *InsertLeftNode(BiTreeNode *curr, DataType x)
{
    BiTreeNode *s, *t;
    if(curr == NULL) return NULL;
    t = curr->leftChild;/*保存原curr所指结点的左子树指针*/
    s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
    s->data = x;
    s->leftChild = t;/*新插入结点的左子树为原curr的左子树*/
    s->rightChild = NULL;
    curr->leftChild = s;/*新结点成为curr的左子树*/
    return curr->leftChild;/*返回新插入结点的指针*/
}
/*若当前结点curr非空,在curr的右子树插入元素值为x的新结点*/
/*原curr所指结点的右子树成为新插入结点的右子树*/
/*若插入成功返回新插入结点的指针,否则返回空指针*/
BiTreeNode *InsertRightNode(BiTreeNode *curr, DataType x)
{
    BiTreeNode *s, *t;
    if(curr == NULL) return NULL;
    t = curr->rightChild;/*保存原curr所指结点的右子树指针*/
    s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
    s->data = x;
    s->rightChild = t;/*新插入结点的右子树为原curr的右子树*/
    s->leftChild = NULL;
    curr->rightChild = s;/*新结点成为curr的右子树*/
    return curr->rightChild;/*返回新插入结点的指针*/
}
void PreOrder(BiTreeNode *t, void visit(DataType item))
//使用visit(item)函数前序遍历二叉树t
{
    if(t != NULL)
    {
        //此小段有一处错误  已改
        visit(t->data);
        PreOrder(t-> leftChild, visit);
        PreOrder(t-> rightChild, visit);
    }
}
void InOrder(BiTreeNode *t, void visit(DataType item))
//使用visit(item)函数中序遍历二叉树t
{
    if(t != NULL)
    {
        //此小段有一处错误 已改
        InOrder(t->leftChild, visit);
        visit(t->data);
        InOrder(t->rightChild, visit);
    }
}
void PostOrder(BiTreeNode *t, void visit(DataType item))
//使用visit(item)函数后序遍历二叉树t
{
    if(t != NULL)
    {
        //此小段有一处错误  已改
        PostOrder(t->leftChild, visit);
        PostOrder(t->rightChild, visit);
        visit(t->data);
    }
}
void Visit(DataType item)
{
    printf("%c ", item);
}
BiTreeNode *Search(BiTreeNode *root, DataType x)//需找元素x是否在二叉树中
{
    BiTreeNode *find=NULL;
    if(root!=NULL)
    {
        if(root->data==x)
            find=root;
        else
        {
            find=Search(root->leftChild,x);
            if(find==NULL)
                find=Search(root->rightChild,x);
        }
    }
    return find;
}
int main()
{
    BiTreeNode *root, *p, *pp,*find;
    char x='E';
    Initiate(&root);
    p = InsertLeftNode(root, 'A');
    p = InsertLeftNode(p, 'B');
    p = InsertLeftNode(p, 'D');
    p = InsertRightNode(p, 'G');
    p = InsertRightNode(root->leftChild, 'C');
    pp = p;
    InsertLeftNode(p, 'E');
    InsertRightNode(pp, 'F');
    printf("前序遍历:");
    PreOrder(root->leftChild, Visit);
    printf("\n中序遍历:");
    InOrder(root->leftChild, Visit);
    printf("\n后序遍历:");
    PostOrder(root->leftChild, Visit);
    find=Search(root,x);
    if(find!=NULL)
        printf("\n数据元素%c在二叉树中 \n",x);
    else
        printf("\n数据元素%c不在二叉树中 \n",x);
    Destroy(&root);
}


第二题


#include <stdlib.h>
#include <stdio.h>
#define MAX 100
typedef char DataType;
typedef struct Node
{
    DataType data;/*数据域*/
    struct Node *leftChild;/*左子树指针*/
    struct Node *rightChild;/*右子树指针*/
} BiTreeNode; /*结点的结构体定义*/
/*初始化创建二叉树的头结点*/
void Initiate(BiTreeNode **root)
{
    *root = (BiTreeNode *)malloc(sizeof(BiTreeNode));
    (*root)->leftChild = NULL;
    (*root)->rightChild = NULL;
}
void Destroy(BiTreeNode **root)
{
    if((*root) != NULL && (*root)->leftChild != NULL)
        Destroy(&(*root)->leftChild);
    if((*root) != NULL && (*root)->rightChild != NULL)
        Destroy(&(*root)->rightChild);
    free(*root);
}
/*若当前结点curr非空,在curr的左子树插入元素值为x的新结点*/
/*原curr所指结点的左子树成为新插入结点的左子树*/
/*若插入成功返回新插入结点的指针,否则返回空指针*/
BiTreeNode *InsertLeftNode(BiTreeNode *curr, DataType x)
{
    BiTreeNode *s, *t;
    if(curr == NULL) return NULL;
    t = curr->leftChild;/*保存原curr所指结点的左子树指针*/
    s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
    s->data = x;
    s->leftChild = t;/*新插入结点的左子树为原curr的左子树*/
    s->rightChild = NULL;
    curr->leftChild = s;/*新结点成为curr的左子树*/
    return curr->leftChild;/*返回新插入结点的指针*/
}
/*若当前结点curr非空,在curr的右子树插入元素值为x的新结点*/
/*原curr所指结点的右子树成为新插入结点的右子树*/
/*若插入成功返回新插入结点的指针,否则返回空指针*/
BiTreeNode *InsertRightNode(BiTreeNode *curr, DataType x)
{
    BiTreeNode *s, *t;
    if(curr == NULL) return NULL;
    t = curr->rightChild;/*保存原curr所指结点的右子树指针*/
    s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
    s->data = x;
    s->rightChild = t;/*新插入结点的右子树为原curr的右子树*/
    s->leftChild = NULL;
    curr->rightChild = s;/*新结点成为curr的右子树*/
    return curr->rightChild;/*返回新插入结点的指针*/
}
//前序遍历非递归算法
void Prev(Node *root)
{
    Node *p,*node[MAX];
    int top=0;
    p=root;
    do
    {
        while(p!=NULL)
        {
            printf("%c",p->data);
            node[top]=p;
            top++;
            p=p->leftChild;
        }
        if(top>0)
        {
            top--;
            p=node[top];
            p=p->rightChild;
        }
    }
    while(top>0||p!=NULL);
}
//中序遍历非递归算法
void min(Node *root)
{
    Node *p,*node[MAX];
    int top=0;
    p=root;
    do
    {
        while(p!=NULL)
        {
            node[top]=p;
            top++;
            p=p->leftChild;
        }
        if(top>0)
        {
            top--;
            p=node[top];
            printf("%c",p->data);
            p=p->rightChild;
        }
    }
    while(top>0||p!=NULL);
}
BiTreeNode *Search(BiTreeNode *root, DataType x)//需找元素x是否在二叉树中
{
    BiTreeNode *find=NULL;
    if(root!=NULL)
    {
        if(root->data==x)
            find=root;
        else
        {
            find=Search(root->leftChild,x);
            if(find==NULL)
                find=Search(root->rightChild,x);
        }
    }
    return find;
}
int main(void)
{
    BiTreeNode *root, *p, *pp,*find;
    char x='E';
    Initiate(&root);
    p = InsertLeftNode(root, 'A');
    p = InsertLeftNode(p, 'B');
    p = InsertLeftNode(p, 'D');
    p = InsertRightNode(p, 'G');
    p = InsertRightNode(root->leftChild, 'C');
    pp = p;
    InsertLeftNode(p, 'E');
    InsertRightNode(pp, 'F');
    printf("前序遍历:");
    Prev(root->leftChild);
    printf("\n中序遍历:");
    min(root->leftChild);
    find=Search(root,x);
    if(find!=NULL)
        printf("\n数据元素%c在二叉树中 \n",x);
    else
        printf("\n数据元素%c不在二叉树中 \n",x);
    Destroy(&root);
}
相关文章
|
3月前
|
消息中间件 缓存 NoSQL
Redis各类数据结构详细介绍及其在Go语言Gin框架下实践应用
这只是利用Go语言和Gin框架与Redis交互最基础部分展示;根据具体业务需求可能需要更复杂查询、事务处理或订阅发布功能实现更多高级特性应用场景。
286 86
|
5月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
159 1
|
5月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
130 0
|
9月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
288 10
 算法系列之数据结构-二叉树
|
10月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
11月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
192 10
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1030 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
291 59
|
6月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
126 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。