UPC Travel by Car (两次Floyd)

简介: UPC Travel by Car (两次Floyd)

问题 E: Travel by Car

题目描述

There are N towns numbered 1 to N and M roads. The i-th road connects Town Ai and Town Bi bidirectionally and has a length of Ci.

Takahashi will travel between these towns by car, passing through these roads. The fuel tank of his car can contain at most L liters of fuel, and one liter of fuel is consumed for each unit distance traveled. When visiting a town while traveling, he can full the tank (or choose not to do so). Travel that results in the tank becoming empty halfway on the road cannot be done.

Process the following Q queries:

The tank is now full. Find the minimum number of times he needs to full his tank while traveling from Town si to Town ti. If Town ti is unreachable, print −1.

Constraints

·All values in input are integers.

·2≤N≤300

·0≤M≤N(N−1)/2

·1≤L≤109

·1≤Ai,Bi≤N

·Ai≠Bi

·(Ai,Bi)≠(Aj,Bj) (if i≠j)

·(Ai,Bi)≠(Bj,Aj) (if i≠j)

·1≤Ci≤109

·1≤Q≤N(N−1)

·1≤si,ti≤N

·si≠ti

·(si,ti)≠(sj,tj) (if i≠j)

输入

Input is given from Standard Input in the following format:

N M L

A1 B1 C1

:

AM BM CM

Q

s1 t1

:

sQ tQ


输出

Print Q lines.

The i-th line should contain the minimum number of times the tank needs to be fulled while traveling from Town si to Town ti. If Town ti is unreachable, the line should contain −1 instead.

样例输入 Copy

【样例1】

3 2 5

1 2 3

2 3 3

2

3 2

1 3

【样例2】

4 0 1

1

2 1

【样例3】

5 4 4

1 2 2

2 3 2

3 4 3

4 5 2

20

2 1

3 1

4 1

5 1

1 2

3 2

4 2

5 2

1 3

2 3

4 3

5 3

1 4

2 4

3 4

5 4

1 5

2 5

3 5

4 5

样例输出 Copy

【样例1】

0

1

【样例2】

-1

【样例3】

0

0

1

2

0

0

1

2

0

0

0

1

1

1

0

0

2

2

1

0

提示

样例1解释

To travel from Town 3 to Town 2, we can use the second road to reach Town 2 without fueling the tank on the way.

To travel from Town 1 to Town 3, we can first use the first road to get to Town 2, full the tank, and use the second road to reach Town 3.

样例2解释

There may be no road at all.

题意: N个点,M条双向道路,在行驶过程中车会耗油。在经过每个点时可以选择加满油或不加油,给出q次询问,问汽车从s到e点的最少加油量。


思路: 最短路~显而易见。

所以最开始写了个求最短距离的最短路,对每次结果除以油箱油量。其实仔细想想这种思路是错的,因为加油是只能在每一个点加,而不是在任意点都能加。

看一下正确的思路,先对题目中给定的图进行计算,算出每两个点之间的距离,再根据这个距离建新的图。我们设d [i] [j] 表示从 i 到 j 的最短路径,如果这个值小于油箱容量就说明这两个点不需要加油就可以到达,反之说明必须要加油才能到达。我们在这个基础上再跑一遍Floyd 就可以得出答案了。

最后需要注意答案输出时要-1,因为我们假设车子一开始是没有油的,而题目中车子一开始是满油的。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define I_int ll
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
char F[200];
inline void out(I_int x) {
    if (x == 0) return (void) (putchar('0'));
    I_int tmp = x > 0 ? x : -x;
    if (x < 0) putchar('-');
    int cnt = 0;
    while (tmp > 0) {
        F[cnt++] = tmp % 10 + '0';
        tmp /= 10;
    }
    while (cnt > 0) putchar(F[--cnt]);
    //cout<<" ";
}
const int maxn=310,mod=1e9+7;
const ll inf=1e13;
ll d[maxn][maxn],cnt[maxn][maxn];
ll n,m,l,q,s,t;
void AC(){
    n=read();m=read();l=read();
    ll a,b,c;
    for(ll i=1;i<=n;i++)
        for(ll j=1;j<=n;j++)
            if(i==j) d[i][j]=0;
            else d[i][j]=inf;
    for(int i=1;i<=m;i++){
        a=read();b=read();c=read();
        if(c<=l&&c<d[a][b]) d[a][b]=d[b][a]=c;
    }
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i==j) continue;
            else{
                if(d[i][j]<=l) cnt[i][j]=1;
                else cnt[i][j]=inf;
            }
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                cnt[i][j]=min(cnt[i][j],cnt[i][k]+cnt[k][j]);
    q=read();
    while(q--){
        s=read();t=read();
        if(cnt[s][t]==inf) cout<<"-1";
        else out(cnt[s][t]-1);
        puts("");
    }       
    //out(res);
}
int main(){
    AC();
    return 0;
}
目录
相关文章
|
6月前
|
机器学习/深度学习 安全 Java
hdu-1596-find the safest road(dijkstra)
hdu-1596-find the safest road(dijkstra)
40 0
|
算法
1091 zoj Knight Moves的BFS算法和DFS
1091 zoj Knight Moves的BFS算法和DFS
60 0
P2852 [USACO06DEC]牛奶模式Milk Patterns 后缀数组(poj3261)
P2852 [USACO06DEC]牛奶模式Milk Patterns 后缀数组(poj3261)
96 0
|
人工智能
Codeforces1343D - Constant Palindrome Sum + UPC-鸭子游戏 (差分)
Codeforces1343D - Constant Palindrome Sum + UPC-鸭子游戏 (差分)
101 1
|
定位技术
UPC——帕琪的药园(dfs或并查集)
UPC——帕琪的药园(dfs或并查集)
79 0
POJ-2488,A Knight's Journey(DFS)
POJ-2488,A Knight's Journey(DFS)
洛谷P3855-[TJOI2008]Binary Land(BFS)
洛谷P3855-[TJOI2008]Binary Land(BFS)
Funny Car Racing - 最短路小技巧
题意: n个路口,m条街道,每条街道都是有向的 并且这m条街道open a秒 close b秒(循环往复),自己的车通过这条道路需要t秒 可以从路口等待某一条道路open,必须在道路close 之前通过,且必须在另一条道路open的时候进入 问能否从s点到达t点,如果不能,输出-1,如果能输出最短的时间 细节的地方加在了代码里,在建图的过程中,如果说a > t,那么说这条路无论如何是走不过去的,所以干脆直接不建边
92 0
|
人工智能 vr&ar
Atcoder--Candy Distribution II--前缀和+map
题目描述 There are N boxes arranged in a row from left to right. The i-th box from the left contains Ai candies. You will take out the candies from some consecutive boxes and distribute them evenly to M children. Such being the case, find the number of the pairs (l,r) that satisfy the following:
100 0
HDU-1598,find the most comfortable road(并查集+枚举)
HDU-1598,find the most comfortable road(并查集+枚举)