《Python数据挖掘:概念、方法与实践》——1.2节如何进行数据挖掘

简介:

本节书摘来自华章社区《Python数据挖掘:概念、方法与实践》一书中的第1章,第1.2节如何进行数据挖掘,作者[美] 梅甘·斯夸尔(Megan Squire),更多章节内容可以访问云栖社区“华章社区”公众号查看

1.2 如何进行数据挖掘
由于数据挖掘传统上被视为KDD全过程中的一步,并且越来越成为数据科学过程的一部分,在本节中我们将熟悉其所涉及的步骤。进行数据挖掘有多种流行的方法。本书中我们重点介绍4种方法:其中两种取自数据挖掘理论的教科书,一种取自行业中非常实用的过程,一种是为教授入门者而设计的。
1.2.1 Fayyad等人的KDD过
知识发现和数据挖掘过程的早期版本之一由Usama Fayyad、Gregory Piatetsky-Shapiro和 Padhraic Smyth在1996年的一篇论文(The KDD Process for Extracting Useful Knowledge from Volumes of Data)中定义。这篇论文在当时很重要,它将快速变化的KDD方法论精炼为具体的一组步骤。如下步骤以原始数据开始,以知识作为结束:
数据选择。这一步的输入是原始数据,输出是较小的数据子集,称为目标数据。
数据预处理。目标数据得到清理,删除异常值,处理缺失数据。这一步的输出是预处理数据或清理后数据。
数据变换。清理后的数据组织成适合于挖掘步骤的格式,如果有必要,精简特征或者变量的数量。这一步的输出是变换后数据。
数据挖掘。用适合于问题的一种或者多种数据挖掘算法对变换后数据进行挖掘,这一步的输出是发现的模式。
数据解释/评估。评估所发现模式解决手上问题的能力。这一步的输出是知识。
由于这一过程从原始数据得出知识,因此,这些作者对“数据库中的知识发现”这一术语作出了真正的贡献,而不仅仅是简单的数据挖掘。
1.2.2 韩家炜等人的KDD过程
韩家炜、Micheline Kamber和裴健所著的流行数据挖掘教科书《Data Mining: Concepts and Techniques》描述了知识发现过程的另一个版本,其中的步骤也是从原始数据导出知识:
数据清理。这一步的输入是原始数据,输出是清理后的数据。
数据整合。在这一步中,清理后数据被整合(如果它们来自多个来源)。这一步的输出是整合数据。
数据选择。数据集被精简为仅包含手上问题所需的数据。这一步的输出是较小的数据集。
数据变换。较小的数据集被合并为一种适合于将来的数据挖掘步骤的形式,称为变换后数据。
数据挖掘。变换后的数据由设计用于发现数据中模式的智能算法处理。这一步的输出是一种或者多种模式。
模式评估。评估所发现模式的兴趣度和解决手上问题的能力。这一步的输出是适用于每个模式(代表知识)的兴趣度计量。
知识表示。在这一步中,通过各种手段(包括可视化)将知识传达给用户。
在Fayyad和韩的方法中,都预计该过程在必要时需要多次重复这些步骤。例如,如果在变换步骤中,分析人员发现需要再进行一次数据清理或者预处理,这两种方法都规定分析人员应该按原路返回,完成前面未完成步骤的第二次迭代。
1.2.3 CRISP-DM过程
KDD过程的第3种流行版本称为CRISP-DM,其用于许多商业和应用领域,它的全称是CRoss-Industry Standard Process for Data Mining(跨行业数据挖掘标准过程),包含如下步骤:
1)业务理解。在这一步中,分析人员花时间从业务视角理解数据挖掘项目的动机。
2)数据理解。在这一步中,分析人员熟悉数据及其潜在优势和不足,并开始生成假设。分析人员的任务是在必要时重新评估第1步的业务理解。
3)数据准备。这一步包含其他模型作为单独步骤列举的选择、整合、变换和预处理步骤。CRISP-DM模型对这些任务的执行顺序没有要求。
4)建模。这一步中对数据应用算法以发现模式。这一步骤最接近于其他KDD模型中的数据挖掘步骤。分析人员的任务是在建模和挖掘步骤需要的时候重新评估第3步的数据准备。
5)评估。评估模型和发现的模式在回答手上的业务问题中的价值。分析人员的任务是在必要时重温第1步的业务理解。
6)部署。呈现发现的知识和模型,并投产以解决手上的原始问题。
这种方法的优势之一是,迭代是内建的。在特定步骤之间,分析人员将检查当前步骤仍然与之前的某些步骤保持一致。另一个优势是明确地提醒分析人员,即使在评估步骤中也要将业务问题放在项目的核心位置。
1.2.4 六步过程
当我在大学里教授数据科学入门课程时,使用了自己创造的一种混合方法。这种方法称为“六步过程”,这种专门设计的方法对于授课很合适。我的六步方法消除了没有经验的学生在CRISP-DM中的开放式任务(如业务理解)或者基于企业任务(如部署)中可能遇到的歧义问题。此外,六步方法要求学生在过程的开始和最后回答“为什么这么做”和“这有什么意义”的问题,以拓展学生的批判性思维技能。我的六步方法如下:
1)问题陈述。在这一步中,学生确定他们试图解决的问题。在理想状况下,了解进行这些工作的原因可以提高他们的积极性。
2)数据收集和存储。在这一步中,学生们定位数据并规划这一问题所需数据的存储。他们还提供一些信息,这些信息与回答他们感兴趣的问题所需数据的来源、格式以及所有字段含义相关。
3)数据清理。在这一步中,学生们认真选择真正需要的数据,并将数据处理成挖掘步骤所需的格式。
4)数据挖掘。在这一步中,学生形式化所选择的数据挖掘方法。他们描述使用的算法以及原因。这一步的输出是模型和发现的模式。
5)表示和可视化。在这一步中,学生直观地展示工作成果。这一步的输出可以是表格、图示、图形、图表、网络框图、映射图等。
6)问题解决。这一步对数据挖掘初学者很重要,它明确地鼓励学生评估第5步中展示的模式是不是第1步中提出的问题的答案。学生们被要求说明模型或者结果的局限性,确定用这种方法无法回答的部分相关问题。
1.2.5 哪一种数据挖掘方法最好
2014年,Gregory Piatetsky-Shapiro在其非常受欢迎的数据挖掘电子邮件通讯KD-Nuggets上进行的调查包含了一个问题:“你在分析、数据挖掘或者数据库科学项目中使用哪一种主要方法?”
43%的调查对象表示他们使用CRISP-DM方法。
27%的调查对象使用自己的方法或者混合方法。
7%的调查对象使用传统的KDD方法。
其余调查对象选择另一种KDD方法。
这些结果和2007年同一邮件通讯所做的相同调查结果类似。
我的最佳建议是,不要过于重视用于数据挖掘项目的方法,随便挑一种即可。如果完全不使用任何方法,那么就有遗漏重要步骤的危险。选择看上去对你的项目和需求有效的方法,然后尽可能遵循该方法的步骤。
在本书中,我们将根据相关章节中研究的技术,选择不同的数据挖掘方法。例如,尽管本书的焦点是数据挖掘步骤,但是仍然需要对每章中的项目实施健全的业务理解(CRISP-DM)或者问题陈述(六步过程)步骤,以便理解我们执行任务的原因和结果的意义。此外,为了学习特定的数据挖掘方法,我们可能还必须进行一些预处理,不管这一过程称为“数据清理”、“整合”还是“变换”。但是通常来说,我们将尽可能减少此类任务,将焦点清晰地置于数据挖掘之上。在最后一章有个显著的例外,我们将在那里展示处理缺失数据和异常数据的具体方法。最后,尽管对于将数据挖掘过程的结果展示给受众来说,数据可视化通常非常重要,我们仍然将尽可能减少这些任务,以便将重点放在主要的工作—数据挖掘上。

相关文章
|
3天前
|
存储 数据采集 监控
Python定时爬取新闻网站头条:从零到一的自动化实践
在信息爆炸时代,本文教你用Python定时爬取腾讯新闻头条,实现自动化监控。涵盖请求、解析、存储、去重、代理及异常通知,助你构建高效新闻采集系统,适用于金融、电商、媒体等场景。(238字)
63 2
|
15天前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
209 0
|
25天前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
252 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
1月前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
197 1
|
1月前
|
算法 调度 决策智能
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
机器学习/深度学习 算法 自动驾驶
259 0
|
1月前
|
存储 人工智能 算法
Python实现简易成语接龙小游戏:从零开始的趣味编程实践
本项目将中国传统文化与编程思维相结合,通过Python实现成语接龙游戏,涵盖数据结构、算法设计与简单AI逻辑,帮助学习者在趣味实践中掌握编程技能。
164 0
|
1月前
|
大数据 数据处理 数据安全/隐私保护
Python3 迭代器与生成器详解:从入门到实践
简介:本文深入解析Python中处理数据序列的利器——迭代器与生成器。通过通俗语言与实战案例,讲解其核心原理、自定义实现及大数据处理中的高效应用。
94 0
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)

推荐镜像

更多