从零使用GAN(生成对抗网络)进行图像生成

简介: 本项目使用 DCGAN 模型,在自建数据集上进行实验。

前言

本项目使用 DCGAN 模型,在自建数据集上进行实验。

本项目使用的数据集是人脸嘴巴区域——微笑表情的数据集

2345_image_file_copy_113.jpg

数据集文件夹结构如下,图片供 4357 张

├─mouth
│  └─smile
     ├─1smile.jpg
     ├─2smile.jpg
     ├─3smile.jpg
     └─....  

同时,创建一个 out 文件夹来保存训练的中间结果,主要就是看 DCGAN 是如何从一张噪声照片生成我们期待的图片

import os
import time
if os.path.exists("out"):
    print("移除现有 out 文件夹!")
    os.system("rm -r ./out")
time.sleep(1)
print("创建 out 文件夹!")
os.mkdir("./out")

移除现有 out 文件夹!

创建 out 文件夹!

下方链接为该数据集压缩包,需要者自取:数据集

运行下面代码,对数据集进行解压。

由于图片数量多,解压需要一定时间

!unzip mouth.zip -d ./mouth
print("解压完毕!")

导入所需包

from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

基本参数配置

# 设置一个随机种子,方便进行可重复性实验
manualSeed = 999
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
# 数据集所在路径
dataroot = "mouth/"
# 数据加载的进程数
workers = 0
# Batch size 大小
batch_size = 64
# Spatial size of training images. All images will be resized to this
# size using a transformer.
# 图片大小
image_size = 64
# 图片的通道数
nc = 3
# Size of z latent vector (i.e. size of generator input)
nz = 100
# Size of feature maps in generator
ngf = 64
# Size of feature maps in discriminator
ndf = 64
# Number of training epochs
num_epochs = 10
# Learning rate for optimizers
lr = 0.0003
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5
# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")

导入数据集

# We can use an image folder dataset the way we have it setup.
# Create the dataset
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                               transforms.Resize(image_size),
                               transforms.CenterCrop(image_size),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                           ]))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                         shuffle=True, num_workers=workers)

简单看一下我们的原始数据集长啥样

# Plot some training images
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))
# plt.show()

<matplotlib.image.AxesImage at 0x7f67b59d9cf8>

定义生成器与判别器

# 权重初始化函数,为生成器和判别器模型初始化
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
# Generator Code
class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )
    def forward(self, input):
        return self.main(input)
class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )
    def forward(self, input):
        return self.main(input)

初始化生成器和判别器

# Create the generator
netG = Generator(ngpu).to(device)
# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netG = nn.DataParallel(netG, list(range(ngpu)))
# Apply the weights_init function to randomly initialize all weights
# to mean=0, stdev=0.2.
netG.apply(weights_init)
# Print the model
print(netG)
# Create the Discriminator
netD = Discriminator(ngpu).to(device)
# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netD = nn.DataParallel(netD, list(range(ngpu)))
# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netD.apply(weights_init)
# Print the model
print(netD)

定义损失函数

# Initialize BCELoss function
criterion = nn.BCELoss()

开始训练

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
# Establish convention for real and fake labels during training
real_label = 1.0
fake_label = 0.0
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
# Training Loop
# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    import time
    start = time.time()
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):
        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, device=device)
        # Forward pass real batch through D
        output = netD(real_cpu).view(-1)
        # Calculate loss on all-real batch
        errD_real = criterion(output, label)
        # Calculate gradients for D in backward pass
        errD_real.backward()
        D_x = output.mean().item()
        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        # Classify all fake batch with D
        output = netD(fake.detach()).view(-1)
        # Calculate D's loss on the all-fake batch
        errD_fake = criterion(output, label)
        # Calculate the gradients for this batch
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # Add the gradients from the all-real and all-fake batches
        errD = errD_real + errD_fake
        # Update D
        optimizerD.step()
        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake batch through D
        output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D_G_z2 = output.mean().item()
        # Update G
        optimizerG.step()
        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())
        # Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 20 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
            i = vutils.make_grid(fake, padding=2, normalize=True)
            fig = plt.figure(figsize=(8, 8))
            plt.imshow(np.transpose(i, (1, 2, 0)))
            plt.axis('off')  # 关闭坐标轴
            plt.savefig("out/%d_%d.png" % (epoch, iters))
            plt.close(fig)
        iters += 1
    print('time:', time.time() - start)

绘制损失曲线

plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

2345_image_file_copy_114.jpg

真假对比

# Grab a batch of real images from the dataloader
# real_batch = next(iter(dataloader))
# Plot the real images
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))
# Plot the fake images from the last epoch
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()

2345_image_file_copy_115.jpg

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
6月前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集
**YOLOv2算法在MATLAB2022a中实现人脸检测:** 展示6个检测结果图,利用Darknet-19进行特征提取,网络每个网格预测BBox,包含中心偏移、尺寸、置信度和类别概率。多任务损失函数结合定位、置信度和分类误差。程序加载预训练模型,遍历图像,对检测到的人脸以0.15阈值画出边界框并显示。
|
6月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
403 0
|
1月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
2月前
|
机器学习/深度学习 自然语言处理 计算机视觉
用于图像和用于自然语言的神经网络区别
主要区别总结 数据结构:图像数据是二维像素矩阵,具有空间结构;文本数据是一维序列,具有时间结构。 网络架构:图像处理常用CNN,注重局部特征提取;自然语言处理常用RNN/LSTM/Transformer,注重序列和全局依赖。 操作单元:图像处理中的卷积核在空间上操作;自然语言处理中的注意力机制在序列上操作。
22 2
|
3月前
|
机器学习/深度学习 人工智能 编解码
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
36 3
|
3月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
37 5
|
3月前
|
机器学习/深度学习 数据可视化 算法框架/工具
【深度学习】Generative Adversarial Networks ,GAN生成对抗网络分类
文章概述了生成对抗网络(GANs)的不同变体,并对几种经典GAN模型进行了简介,包括它们的结构特点和应用场景。此外,文章还提供了一个GitHub项目链接,该项目汇总了使用Keras实现的各种GAN模型的代码。
68 0
|
5月前
|
机器学习/深度学习 自然语言处理 算法
生成对抗网络(GAN):创造与竞争的艺术
【6月更文挑战第14天】**生成对抗网络(GANs)**是深度学习中的亮点,由生成器和判别器两部分构成,通过博弈式训练实现数据生成。GAN已应用于图像生成、修复、自然语言处理和音频生成等领域,但还面临训练不稳定性、可解释性差和计算资源需求高等挑战。未来,随着技术发展,GAN有望克服这些问题并在更多领域发挥潜力。
|
4月前
|
机器学习/深度学习 PyTorch API
生成对抗网络(GAN)由两部分组成:生成器(Generator)和判别器(Discriminator)。
生成对抗网络(GAN)由两部分组成:生成器(Generator)和判别器(Discriminator)。