数据导入与预处理-第4章-pandas数据获取(上)

简介: 数据导入与预处理-第4章-pandas数据获取1 数据获取1.1 概述1.2 从CSV和TXT文件获取数据1.2.1 读取csv案例-指定sep,encoding,engine1.2.2 读取csv案例-names和header1.2.3 读取csv案例-指定index_col和usecols1.2.4 读取csv案例-指定nrows和skiprows1.2.5 读取csv案例-指定dtype1.2.6读取csv案例-分块读取chun

1 数据获取

1.1 概述

数据经过采集后通常会被存储到Word、Excel、JSON等文件或数据库中,从而为后期的预处理工作做好数据储备。数据获取是数据预处理的第一步操作,主要是从不同的渠道中读取数据。Pandas支持CSV、TXT、Excel、JSON这几种格式文件、HTML表格的读取操作,另外Python可借助第三方库实现Word与PDF文件的读取操作。本章主要为大家介绍如何从多个渠道中获取数据,为预处理做好数据准备。

1.2 从CSV和TXT文件获取数据

参考连接:https://zhuanlan.zhihu.com/p/340441922

掌握read_csv()函数的用法,可以熟练地使用该方法从CSV或TXT文件中获取数据CSV(Comma-Separated Values,字符分隔值)和TXT是比较常见的文本格式,其文件以纯文本形式存储数据,其中CSV文件通常是以逗号或制表符为分隔符来分隔值的文本文档,扩展名为“.csv”,可通过Excel等文本编辑器查看与编辑;TXT是微软公司在操作系统上附带的一种文本格式,其文件扩展名为“.txt”,可通过记事本等软件查看。

Pandas中使用read_csv()函数读取CSV或TXT文件的数据,并将读取的数据转换成一个DataFrame类对象。

read_csv(filepath_or_buffer,sep=',', delimiter=None, 
               header='infer', names=None, index_col=None, usecols=None, 
               squeeze=False, prefix=None, mangle_dupe_cols=True, encoding=None...)

filepath_or_buffe:表示文件的路径,可以取值为有效的路径字符串、路径对象或类似文件的对象。

sep:表示指定的分隔符,默认为“,”。

header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。

names:表示DataFrame类对象的列索引列表,当names没被赋值时,header会变成0,即选取数据文件的第一行作为列名;当 names 被赋值,header 没被赋值时,那么header会变成None。如果都赋值,就会实现两个参数的组合功能。

encoding:表示指定的编码格式。

有一个csv文件,名称为phones.csv

商品名称,价格,颜色
Apple iPhone X (A1865) 64GB,6299,深空灰色
Apple iPhone XS Max (A2104) 256GB ,10999,深空灰色
Apple iPhone XR (A2108) 128GB,6199,黑色
Apple iPhone 8 (A1863) 64GB,3999,深空灰色
Apple iPhone 8 Plus (A1864) 64GB,4799,深空灰色
Apple iPhone XS (A2100) 64GB,8699,深空灰色
Apple 苹果 iPhone Xs Max  256GB,9988,金色
Apple 苹果 iPhone Xs 64GB,8058,金色
Apple 苹果 iPhone XR 128GB,5788,黑色
Apple iPhone 7 (A1660) 128G,4139,玫瑰金色

1.2.1 读取csv案例-指定sep,encoding,engine

import pandas as pd
evaluation_data = pd.read_csv(
       "phones.csv", sep=',',encoding='gbk',engine = 'python')
print(evaluation_data)

engine:使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

encoding:指定字符集类型,即编码,通常指定为’utf-8’

1.2.2 读取csv案例-names和header

  1. names 没有被赋值,header 也没赋值
evaluation_data = pd.read_csv(
       "phones.csv", sep=',',encoding='gbk',engine = 'python')

上面的案例中,names 没有被赋值,header 也没赋值:这种情况下,header为0,即选取文件的第一行作为表头



  1. names 没有被赋值,header 被赋值:
#不指定names,指定header为1,则选取第二行当做表头,第二行下面为数据
pd.read_csv("phones.csv", encoding='gbk',header=1)


输出为:



  1. names 被赋值,header 没有被赋值:
pd.read_csv("phones.csv", encoding='gbk',names=['商品名称1','价格1','颜色1'])

输出为:


可以看到,names适用于没有表头的情况,指定names没有指定header,那么header相当于None。

一般来说,读取文件的时候会有一个表头,一般默认是第一行,但是有的文件中是没有表头的,那么这个时候就可以通过names手动指定、或者生成表头,而文件里面的数据则全部是内容。所以这里id、name、address、date也当成是一条记录了,本来它是表头的,但是我们指定了names,所以它就变成数据了,表头是我们在names里面指定的。

  1. names和header都被赋值:
pd.read_csv("phones.csv", encoding='gbk',names=['商品名称1','价格1','颜色1'],header=0)

输出为:



这个时候,相当于先不看names,只看header,header为0代表先把第一行当做表头,下面的当成数据;然后再把表头用names给替换掉。

所以names和header的使用场景主要如下:

csv文件有表头并且是第一行,那么names和header都无需指定;

csv文件有表头、但表头不是第一行,可能从下面几行开始才是真正的表头和数据,这个时候指定header即可;

csv文件没有表头,全部是纯数据,那么我们可以通过names手动生成表头;

csv文件有表头、但是这个表头你不想用,这个时候同时指定names和header。先用header选出表头和数据,然后再用names将表头替换掉,就等价于将数据读取进来之后再对列名进行rename;

1.2.3 读取csv案例-指定index_col和usecols

  1. 指定index_col
    index_col:我们在读取文件之后所得到的DataFrame的索引默认是0、1、2……,我们可以通过set_index设定索引,但是也可以在读取的时候就指定某列为索引。
pd.read_csv("phones.csv", index_col="商品名称1",encoding='gbk', names=['商品名称1','价格1','颜色1'],header=0)


输出为:


这里,我们在读取的时候指定了name列作为索引;

此外,除了指定单个列,还可以指定多列作为索引,比如[“id”, “name”]。同时,我们除了可以输入列名外,还可以输入列对应的索引。比如:“id”、“name”、“address”、"date"对应的索引就分别是0、1、2、3。


指定usecols

usecols:如果一个数据集中有很多列,但是我们在读取的时候只想要使用到的列,我们就可以使用这个参数。

pd.read_csv("phones.csv", usecols=['价格1','颜色1'],encoding='gbk', names=['商品名称1','价格1','颜色1'],header=0)

输出为:


1.2.4 读取csv案例-指定nrows和skiprows

skiprows:表示过滤行,想过滤掉哪些行,就写在一个列表里面传递给skiprows即可。注意的是:这里是先过滤,然后再确定表头

nrows:设置一次性读入的文件行数,在读入大文件时很有用,比如 16G 内存的PC无法容纳几百 G 的大文件。

pd.read_csv("phones.csv",encoding='gbk',nrows = 2,skiprows = [i for i in range(1,9)])

输出为:




其中skiprows = [i for i in range(1,9)]跳过了前8条数据,nrows = 2输出为跳过之后的2条数据。

1.2.5 读取csv案例-指定dtype

df = pd.read_csv("phones.csv",encoding='gbk')
df.info()

输出为:


df1 = pd.read_csv("phones.csv",encoding='gbk', dtype={'价格': str})
# 也可以df1['价格'] = df1['价格'].astype("str")
df1.info()

输出为:



1.2.6读取csv案例-分块读取chunk

df = pd.read_csv("phones.csv",encoding='gbk', chunksize= 4)
count = 0
print('*'*10)
for i in df:
    print(count)
    count +=1 
    print(i)
    print('*'*10)

输出为:


1.2.7 读取txt案例

采用read_csv也可以读取txt文件,同时pandas也提供了read_table用于读取文本文件。

pd.read_table("phones.csv",sep=',',encoding='gbk')

输出为:

1.3读取Excel文件

Excel文件(Excel 2007及以上版本的扩展名为.xlsx)是日常工作中经常使用的,该文件主要以工作表存储数据,工作表中包含排列成行和列的单元格。Excel文件中默认有3个工作表,用户可根据需要添加一定个数(因可用内存的限制)的工作表。

Pandas中使用read_excel()函数读取Excel文件中指定工作表的数据,并将数据转换成一个结构与工作表相似的DataFrame类对象。

pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None,
        usecols=None,squeeze=False, dtype=None, engine=None,converters=None,
        true_values=None, false_values=None, skiprows=None, nrows=None,na_values=None, 
        parse_dates=False, date_parser=None,thousands=None, comment=None, 
        skipfooter=0,convert_float=True,**kwds)

sheet_name:表示要读取的工作表,默认值为0。

header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。

names:表示DataFrame类对象的列索引列表。

值得一提的是,当使用read_excel()函数读取Excel文件时,若出现importError异常,说明当前Python环境中缺少读取Excel文件的依赖库xlrd,需要手动安装依赖库xlrd(pip install xlrd)进行解决。或是安装

pip install openpyxl==3.0.9

1.3.1 读取Excel案例

有Excel文件


data3 = pd.read_excel('Athletes_info.xlsx',sheet_name='Sheet1',header=0,engine='openpyxl')
data3.head(3)

输出为:


io :文件路径。

sheetname:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 → ① int/string 返回的是dataframe ②而none和list返回的是dict

header:指定列名行,默认0,即取第一行

index_col:指定列为索引列,也可以使用u”strings”


备注:使用 pandas 读取 CSV 与 读取 xlsx 格式的 Excel 文件方法大致相同

相关文章
|
4月前
|
数据采集 安全 数据挖掘
Pandas数据合并:10种高效连接技巧与常见问题
在数据分析中,数据合并是常见且关键的步骤。本文针对合并来自多个来源的数据集时可能遇到的问题,如列丢失、重复记录等,提供系统解决方案。基于对超1000个复杂数据集的分析经验,总结了10种关键技术,涵盖Pandas库中`merge`和`join`函数的使用方法。内容包括基本合并、左连接、右连接、外连接、基于索引连接、多键合并、数据拼接、交叉连接、后缀管理和合并验证等场景。通过实际案例与技术原理解析,帮助用户高效准确地完成数据整合任务,提升数据分析效率。
353 13
Pandas数据合并:10种高效连接技巧与常见问题
|
7月前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
439 100
Pandas高级数据处理:数据流式计算
|
8月前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
237 72
|
7月前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
150 31
|
7月前
|
缓存 数据可视化 BI
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
115 12
|
7月前
|
消息中间件 数据挖掘 数据处理
Pandas高级数据处理:数据流式计算
在大数据时代,Pandas作为Python强大的数据分析库,在处理结构化数据方面表现出色。然而,面对海量数据时,如何实现高效的流式计算成为关键。本文探讨了Pandas在流式计算中的常见问题与挑战,如内存限制、性能瓶颈和数据一致性,并提供了详细的解决方案,包括使用`chunksize`分批读取、向量化操作及`dask`库等方法,帮助读者更好地应对大规模数据处理需求。
149 17
|
7月前
|
数据采集 存储 数据可视化
Pandas高级数据处理:数据报告生成
Pandas 是数据分析领域不可或缺的工具,支持多种文件格式的数据读取与写入、数据清洗、筛选与过滤。本文从基础到高级,介绍如何使用 Pandas 进行数据处理,并解决常见问题和报错,如数据类型不一致、时间格式解析错误、内存不足等。最后,通过数据汇总、可视化和报告导出,生成专业的数据报告,帮助你在实际工作中更加高效地处理数据。
172 8
|
7月前
|
数据采集 并行计算 数据可视化
Pandas高级数据处理:数据报告生成实战指南
数据报告生成面临数据质量、计算性能、呈现形式和自动化等核心挑战。常见问题包括缺失值导致统计失真、内存溢出及可视化困难。解决方案涵盖数据清洗、分块处理、安全绘图模板等。通过模块化设计、异常处理机制和性能优化策略,如使用`category`类型、并行计算等,可大幅提升效率。最佳实践建议建立数据质量检查清单、版本控制和自动化测试框架,确保系统具备自适应能力,提升报告生成效率300%以上。
145 12
|
8月前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
146 21
|
8月前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
136 17