算法与数据结构全阶班-左程云版(二)基础阶段之1.复杂度、对数器、二分法和异或运算(上)

简介: 本文主要介绍了数据结构与算法的基本概念,包括算法评价指标、复杂度、对数器、二分法和异或运算。

引言

本文主要介绍了数据结构与算法的基本概念,包括算法评价指标、复杂度、对数器、二分法和异或运算。

1.概述

评价算法优劣的核心指标

时间复杂度(流程决定)

额外空间复杂度(流程决定)

常数项时间(实现细节决定)

常见的常数时间的操作:

常见的算术运算(+、-、*、/、%等)

常见的位运算(>>、>>>、<<、|、&、^等)

赋值、比较、自增、自减操作等

数组寻址操作

总之,执行时间固定的操作都是常数时间的操作。

反之,执行时间不固定的操作,都不是常数时间的操作。

时间复杂度就是计算常数操作了多少次。

如何确定算法流程的总操作数量与样本数量之间的表达式关系:

1.想象该算法流程所处理的数据状况,要按照最差情况来。

2.把整个流程彻底拆分为一个个基本动作,保证每个动作都是常数时间的操作。

3.如果数据量为N,看看基本动作的数量和N是什么关系。

2.复杂度

如何确定算法流程的时间复杂度

当完成了表达式的建立,只要把最高阶项留下即可。低阶项都去掉,高阶项的系数也去掉。

记为:O(忽略掉系数的高阶项)

例如下图:

2345_image_file_copy_97.jpg

显然后者的时间复杂度更低。

时间复杂度的意义在于:

当我们要处理的样本量很大很大时,我们会发现低阶项是什么不是最重要的;每一项的系数是什么,不是最重要的。真正重要的就是最高阶项是什么。

这就是时间复杂度的意义.它是衡量算法流程的复杂程度的一种指标,该指标只与数据量有关,与过程之外的优化无关。

三种基本排序:

选择排序:

package complexity01;
import java.util.Arrays;
/**
 * @author Corley
 * @date 2021/10/3 19:26
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class SelectionSort {
    public static void selectionSort(int[] arr) {
        if (null == arr || arr.length < 2) {
            return;
        }
        int minIndex;
        for (int i = 0; i < arr.length - 1; i++) {
            minIndex = i;
            for (int j = i + 1; j < arr.length; j++) {
                minIndex = arr[minIndex] < arr[j] ? minIndex : j;
            }
            swap(arr, i, minIndex);
        }
    }
    private static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    public static void main(String[] args) {
        int[] arr = new int[]{3, 2, 5, 1, 4, 9, 0, 7, 12, 5, 7, 3};
        System.out.println(Arrays.toString(arr));
        selectionSort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

冒泡排序:

package complexity01;
import java.util.Arrays;
/**
 * @author Corley
 * @date 2021/10/3 19:41
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BubbleSort {
    public static void bubbleSort(int[] arr) {
        if (null == arr || arr.length < 2) {
            return;
        }
        for (int i = arr.length - 1; i > 0; i--) {
            for (int j = 0; j < i; j++) {
                if (arr[j] > arr[j + 1]) {
                    swap(arr, j, j + 1);
                }
            }
        }
    }
    private static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }
    public static void main(String[] args) {
        int[] arr = new int[]{3, 2, 5, 1, 4, 9, 0, 7, 12, 5, 7, 3};
        System.out.println(Arrays.toString(arr));
        bubbleSort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

这两种排序算法的效果不会受到数据的初始状态的影响。

插入排序:

package complexity01;
import java.util.Arrays;
/**
 * @author Corley
 * @date 2021/10/3 20:10
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class InsertionSort {
    public static void insertionSort(int[] arr) {
        if (null == arr || arr.length < 2) {
            return;
        }
        for (int i = 1; i < arr.length; i++) {
            for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
                swap(arr, j, j + 1);
            }
        }
    }
    private static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }
    public static void main(String[] args) {
        int[] arr = new int[]{3, 2, 5, 1, 4, 9, 0, 7, 12, 5, 7, 3};
        System.out.println(Arrays.toString(arr));
        insertionSort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

插入排序的效果会受到数据的初始状态的影响,例如数组已经是有序的情况下。

额外空间复杂度:

你要实现一个算法流程,在实现算法流程的过程中,你需要开辟一些空间来支持你的算法流程。

作为输入参数的空间,不算额外空间;

作为输出结果的空间,也不算额外空间。

因为这些都是必要的、和现实目标有关的,所以都不算。

但除此之外,你的流程如果还需要开辟空间才能让你的流程继续下去。这部分空间就是额外空间。如果你的流程只需要开辟有限几个变量,额外空间复杂度就是O(1)。

算法流程的常数项的比拼方式:

放弃理论分析,生成随机数据直接测。为什么不去理论分析?

不是不能纯分析.而是没必要。因为不同常数时间的操作,虽然都是固定时间,但还是有快慢之分的。

比如,位运算的常数时间原小于算术运算的常数时间,这两个运算的常数时间又远小于数组寻址的时间。

所以如果纯理论分析,往往会需要非常多的分析过程。都已经到了具体细节的程度.莫不如交给实验数据好了。

常见的时间复杂度(我们陆续都会见到的):

排名从好到差:

O(1)

O(logN)

O(N)

O(N*logN)

O(N^2) O(N^3) … O(N^K)

O(2^N) O(3^N)… O(K^N)

O(N!)

算法和数据结构学习的大脉络:

1)知道怎么算的算法

2)知道怎么试的算法

3.对数器

对数器:

1,你想要测的方法a

2,实现复杂度不好但是容易实现的方法b,实现一个随机样本产生器

4,把方法a和方法b跑相同的随机样本,跑多次,看看得到的结果是否一样

5,如果有一个随机样本使得比对结果不一致,打印样本进行人工干预,改对方法a和方法b

6,当样本数量很多时比对测试依然正确,可以确定方法a已经正确。

4.二分法

二分法:

只要构建出能够排除另外一端的逻辑,就可以使用二分,而不一定需要保证数组有序。

应用:

1)在一个有序数组中,找某个数是否存在

package complexity01;
/**
 * @author Corley
 * @date 2021/10/4 9:03
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BinarySearchExist {
    public static boolean exist(int[] arr, int num) {
        if (null == arr || 0 == arr.length) {
            return false;
        }
        int L = 0, R = arr.length - 1;
        int mid;
        while (L < R) {
            mid = L + ((R - L) >> 1);
            if (arr[mid] == num) {
                return true;
            } else if (arr[mid] < num) {
                L = mid + 1;
            } else {
                R = mid - 1;
            }
        }
        return arr[L] == num;
    }
    public static void main(String[] args) {
        int[] arr = {0, 2, 5, 5, 6, 7, 7, 7, 9, 12};
        System.out.println(exist(arr, 5));
        System.out.println(exist(arr, 8));
        System.out.println(exist(arr, 9));
    }
}

2)在一个有序数组中,找>=某个数最左侧的位置

package complexity01;
/**
 * @author Corley
 * @date 2021/10/4 9:20
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BinarySearchNearLeft {
    public static int nearestIndex(int[] arr, int num) {
        int index = -1;
        if (null == arr || 0 == arr.length) {
            return index;
        }
        int L = 0, R = arr.length - 1;
        int mid;
        while (L <= R) {
            mid = L + ((R - L) >> 1);
            if (arr[mid] >= num) {
                index = mid;
                R = mid - 1;
            } else {
                L = mid + 1;
            }
        }
        return index;
    }
    public static void main(String[] args) {
        int[] arr = {0, 2, 5, 5, 6, 7, 7, 7, 9, 12};
        System.out.println(nearestIndex(arr, 5));
        System.out.println(nearestIndex(arr, 8));
        System.out.println(nearestIndex(arr, 9));
    }
}

3)在一个有序数组中,找<=某个数最右侧的位置

package complexity01;
/**
 * @author Corley
 * @date 2021/10/4 9:30
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BinarySearchNearRight {
    public static int nearestIndex(int[] arr, int num) {
        int index = -1;
        if (null == arr || 0 == arr.length) {
            return index;
        }
        int L = 0, R = arr.length - 1;
        int mid;
        while (L <= R) {
            mid = L + ((R - L) >> 1);
            if (arr[mid] <= num) {
                index = mid;
                L = mid + 1;
            } else {
                R = mid - 1;
            }
        }
        return index;
    }
    public static void main(String[] args) {
        int[] arr = {0, 2, 5, 5, 6, 7, 7, 7, 9, 12};
        System.out.println(nearestIndex(arr, 5));
        System.out.println(nearestIndex(arr, 8));
        System.out.println(nearestIndex(arr, 9));
    }
}


相关文章
|
20天前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
56 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
17天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
30 4
|
24天前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
17 0
数据结构与算法学习十四:常用排序算法总结和对比
|
23天前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
24天前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
17 0
|
11天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
8天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
14天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。