【读书笔记】《大数据之路》——维度设计总结(1)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【读书笔记】《大数据之路》——维度设计总结(1)

一、维度概念

       在维度建模中,将度量称为“事实”,将环境描述为“维度”,维度是用于分析事实所需要的多样环境。维度所包含的表示维度的列,称为维度属性。


       维度使用主键标识其唯一性。


代理键:不具有业务含义(一般用于处理缓慢变化维)

自然键:有业务含义(如商品ID)

二、维度设计方法

选择维度和新建维度(保证维度唯一性)

确定主维表(ods表)

确定相关维表(确定和主维表有联系的表生成维度属性)

确定维度属性

阶段一:从主维表中选择维度属性或生成新的维度属性

阶段二:从相关维表中选择维度属性或生成新的维度属性

确定属性维度的关键:


生成丰富的维度属性

属性应当是有意义的文字性描述(编码用于关联,名称是报表标签)

区分数值性属性和事实(用于约束和分组的字段是维度属性,参与度量计算的是事实)

沉淀出通用的维度属性(表关联/字段解析/字段加工【拼接/判断】)

三、维度的层次结构

       维度中的描述属性以层次方式或一对多的方式相互关联。在创建事实表时,可以按照属性的层次结构向下钻取数据。

1ecd1b2606ed46e9956a89f231c9802c.png

2020062310470442.png

20200623104134875.png

四、规范化和反规范化

雪花模型:属性层次被实例化成一系列的维度,而不是单一的维度


规范化技术(雪花模型):一个属性只存在于一张表, 删除冗余数据,可以避免数据的不一致性。(对OLTP友好,对OLAP能节约存储,但需要大量关联操作,查询性能差)


反规范化技术:将维度属性层次合并到单个维度中,更适用于统计分析,降低了分析复杂度。(用维表空间换取简明性和查询性能)。

五、一致性维度和交叉探查

交叉探查:将不同数据域某个维度的事实合并在一起进行数据探查(日志域的商品pv和交易域的商品GMV,计算转化率)。


维度一致性的表现形式:


共享维表

一致性上卷,一个维度的维度属性是另一个维度的维度属性的子集,两个维度的公共维度属性结构和内容相同。

交叉属性,两个维度具有部分相同的维度属性。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8月前
|
监控 数据可视化 安全
Spring Cloud可视化智慧工地大数据云平台源码(人、机、料、法、环五大维度)
智慧工地平台是依托物联网、互联网、AI、可视化建立的大数据管理平台,是一种全新的管理模式,能够实现劳务管理、安全施工、绿色施工的智能化和互联网化。围绕施工现场管理的人、机、料、法、环五大维度,以及施工过程管理的进度、质量、安全三大体系为基础应用,实现全面高效的工程管理需求,满足工地多角色、多视角的有效监管,实现工程建设管理的降本增效,为监管平台提供数据支撑。
138 2
|
8月前
|
物联网 大数据
助力工业物联网,工业大数据之其他维度:组织机构【十五】
助力工业物联网,工业大数据之其他维度:组织机构【十五】
71 0
|
8月前
|
SQL Oracle 物联网
助力工业物联网,工业大数据之数仓维度层DWS层构建【十二】
助力工业物联网,工业大数据之数仓维度层DWS层构建【十二】
101 0
|
3月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
43 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
3月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
54 1
|
6月前
|
分布式计算 大数据 MaxCompute
MaxCompute产品使用合集之如何实现根据商品维度统计每件商品的断货时长的功能
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
8月前
|
存储 数据挖掘 大数据
大数据数仓建模基础理论【维度表、事实表、数仓分层及示例】
数据仓库建模是组织和设计数据以支持数据分析的过程,包括ER模型和维度建模。ER模型通过实体和关系描述数据结构,遵循三范式减少冗余。维度建模,特别是Kimball方法,用于数据仓库设计,便于分析和报告。事实表存储业务度量,如销售数据,分为累积、快照、事务和周期性快照类型。维度表提供描述性信息,如时间、产品、地点和客户详情。数仓通常分层为ODS(源数据)、DWD(明细数据)、DIM(公共维度)、DWS(数据汇总)和ADS(应用数据),以优化数据管理、质量、查询性能和适应性。
2083 3
|
数据可视化 大数据
2022-11-28-大数据可视化“可视化国产/进口电影票房榜单”分析,特征维度大于50(二)
2022-11-28-大数据可视化“可视化国产/进口电影票房榜单”分析,特征维度大于50
106 0
|
8月前
|
物联网 大数据
助力工业物联网,工业大数据之其他维度:组织机构【十六】
助力工业物联网,工业大数据之其他维度:组织机构【十六】
163 0
|
8月前
|
大数据 物联网
助力工业物联网,工业大数据之工业大数据之油站维度设计【十四】
助力工业物联网,工业大数据之工业大数据之油站维度设计【十四】
50 0