实训目的
1.熟练掌握NumPy多维数组;
2.熟练掌握NumPy索引和切片;
3.熟练掌握NumPy数组读写及数据统计分析
实训要求
读取iris数据集中鸢尾花的萼片、花瓣长度数据(已保存为CSV格式),并对其进行排序、去重,并求出和、累积和、均值、标准差、方差、最小值、最大值
1:导入模块
import numpy as np import csv
2:获取数据
import numpy as np import csv iris_data = [] with open("iris.csv") as csvfile: csv_reader = csv.reader(csvfile) birth_header = next(csv_reader) for row in csv_reader: iris_data.append(row)
输出数据获取的数据看一下是否正确,为了方便查看每两组数据为一行
i = 0 for x in iris_data: i+=1 print(x, end='') if i % 2 == 0: print()
['1', '5.1', '3.5', '1.4', '0.2', 'setosa']['2', '4.9', '3', '1.4', '0.2', 'setosa'] ['3', '4.7', '3.2', '1.3', '0.2', 'setosa']['4', '4.6', '3.1', '1.5', '0.2', 'setosa'] ['5', '5', '3.6', '1.4', '0.2', 'setosa']['6', '5.4', '3.9', '1.7', '0.4', 'setosa'] ['7', '4.6', '3.4', '1.4', '0.3', 'setosa']['8', '5', '3.4', '1.5', '0.2', 'setosa'] ['9', '4.4', '2.9', '1.4', '0.2', 'setosa']['10', '4.9', '3.1', '1.5', '0.1', 'setosa'] ['11', '5.4', '3.7', '1.5', '0.2', 'setosa']['12', '4.8', '3.4', '1.6', '0.2', 'setosa'] ['13', '4.8', '3', '1.4', '0.1', 'setosa']['14', '4.3', '3', '1.1', '0.1', 'setosa'] ['15', '5.8', '4', '1.2', '0.2', 'setosa']['16', '5.7', '4.4', '1.5', '0.4', 'setosa'] ['17', '5.4', '3.9', '1.3', '0.4', 'setosa']['18', '5.1', '3.5', '1.4', '0.3', 'setosa'] ['19', '5.7', '3.8', '1.7', '0.3', 'setosa']['20', '5.1', '3.8', '1.5', '0.3', 'setosa'] ['21', '5.4', '3.4', '1.7', '0.2', 'setosa']['22', '5.1', '3.7', '1.5', '0.4', 'setosa'] ['23', '4.6', '3.6', '1', '0.2', 'setosa']['24', '5.1', '3.3', '1.7', '0.5', 'setosa'] ['25', '4.8', '3.4', '1.9', '0.2', 'setosa']['26', '5', '3', '1.6', '0.2', 'setosa'] ['27', '5', '3.4', '1.6', '0.4', 'setosa']['28', '5.2', '3.5', '1.5', '0.2', 'setosa'] ['29', '5.2', '3.4', '1.4', '0.2', 'setosa']['30', '4.7', '3.2', '1.6', '0.2', 'setosa'] ['31', '4.8', '3.1', '1.6', '0.2', 'setosa']['32', '5.4', '3.4', '1.5', '0.4', 'setosa'] ['33', '5.2', '4.1', '1.5', '0.1', 'setosa']['34', '5.5', '4.2', '1.4', '0.2', 'setosa'] ['35', '4.9', '3.1', '1.5', '0.2', 'setosa']['36', '5', '3.2', '1.2', '0.2', 'setosa'] ['37', '5.5', '3.5', '1.3', '0.2', 'setosa']['38', '4.9', '3.6', '1.4', '0.1', 'setosa'] ['39', '4.4', '3', '1.3', '0.2', 'setosa']['40', '5.1', '3.4', '1.5', '0.2', 'setosa'] ['41', '5', '3.5', '1.3', '0.3', 'setosa']['42', '4.5', '2.3', '1.3', '0.3', 'setosa'] ['43', '4.4', '3.2', '1.3', '0.2', 'setosa']['44', '5', '3.5', '1.6', '0.6', 'setosa'] ['45', '5.1', '3.8', '1.9', '0.4', 'setosa']['46', '4.8', '3', '1.4', '0.3', 'setosa'] ['47', '5.1', '3.8', '1.6', '0.2', 'setosa']['48', '4.6', '3.2', '1.4', '0.2', 'setosa'] ['49', '5.3', '3.7', '1.5', '0.2', 'setosa']['50', '5', '3.3', '1.4', '0.2', 'setosa'] ['51', '7', '3.2', '4.7', '1.4', 'versicolor']['52', '6.4', '3.2', '4.5', '1.5', 'versicolor'] ['53', '6.9', '3.1', '4.9', '1.5', 'versicolor']['54', '5.5', '2.3', '4', '1.3', 'versicolor'] ['55', '6.5', '2.8', '4.6', '1.5', 'versicolor']['56', '5.7', '2.8', '4.5', '1.3', 'versicolor'] ['57', '6.3', '3.3', '4.7', '1.6', 'versicolor']['58', '4.9', '2.4', '3.3', '1', 'versicolor'] ['59', '6.6', '2.9', '4.6', '1.3', 'versicolor']['60', '5.2', '2.7', '3.9', '1.4', 'versicolor'] ['61', '5', '2', '3.5', '1', 'versicolor']['62', '5.9', '3', '4.2', '1.5', 'versicolor'] ['63', '6', '2.2', '4', '1', 'versicolor']['64', '6.1', '2.9', '4.7', '1.4', 'versicolor'] ['65', '5.6', '2.9', '3.6', '1.3', 'versicolor']['66', '6.7', '3.1', '4.4', '1.4', 'versicolor'] ['67', '5.6', '3', '4.5', '1.5', 'versicolor']['68', '5.8', '2.7', '4.1', '1', 'versicolor'] ['69', '6.2', '2.2', '4.5', '1.5', 'versicolor']['70', '5.6', '2.5', '3.9', '1.1', 'versicolor'] ['71', '5.9', '3.2', '4.8', '1.8', 'versicolor']['72', '6.1', '2.8', '4', '1.3', 'versicolor'] ['73', '6.3', '2.5', '4.9', '1.5', 'versicolor']['74', '6.1', '2.8', '4.7', '1.2', 'versicolor'] ['75', '6.4', '2.9', '4.3', '1.3', 'versicolor']['76', '6.6', '3', '4.4', '1.4', 'versicolor'] ['77', '6.8', '2.8', '4.8', '1.4', 'versicolor']['78', '6.7', '3', '5', '1.7', 'versicolor'] ['79', '6', '2.9', '4.5', '1.5', 'versicolor']['80', '5.7', '2.6', '3.5', '1', 'versicolor'] ['81', '5.5', '2.4', '3.8', '1.1', 'versicolor']['82', '5.5', '2.4', '3.7', '1', 'versicolor'] ['83', '5.8', '2.7', '3.9', '1.2', 'versicolor']['84', '6', '2.7', '5.1', '1.6', 'versicolor'] ['85', '5.4', '3', '4.5', '1.5', 'versicolor']['86', '6', '3.4', '4.5', '1.6', 'versicolor'] ['87', '6.7', '3.1', '4.7', '1.5', 'versicolor']['88', '6.3', '2.3', '4.4', '1.3', 'versicolor'] ['89', '5.6', '3', '4.1', '1.3', 'versicolor']['90', '5.5', '2.5', '4', '1.3', 'versicolor'] ['91', '5.5', '2.6', '4.4', '1.2', 'versicolor']['92', '6.1', '3', '4.6', '1.4', 'versicolor'] ['93', '5.8', '2.6', '4', '1.2', 'versicolor']['94', '5', '2.3', '3.3', '1', 'versicolor'] ['95', '5.6', '2.7', '4.2', '1.3', 'versicolor']['96', '5.7', '3', '4.2', '1.2', 'versicolor'] ['97', '5.7', '2.9', '4.2', '1.3', 'versicolor']['98', '6.2', '2.9', '4.3', '1.3', 'versicolor'] ['99', '5.1', '2.5', '3', '1.1', 'versicolor']['100', '5.7', '2.8', '4.1', '1.3', 'versicolor'] ['101', '6.3', '3.3', '6', '2.5', 'virginica']['102', '5.8', '2.7', '5.1', '1.9', 'virginica'] ['103', '7.1', '3', '5.9', '2.1', 'virginica']['104', '6.3', '2.9', '5.6', '1.8', 'virginica'] ['105', '6.5', '3', '5.8', '2.2', 'virginica']['106', '7.6', '3', '6.6', '2.1', 'virginica'] ['107', '4.9', '2.5', '4.5', '1.7', 'virginica']['108', '7.3', '2.9', '6.3', '1.8', 'virginica'] ['109', '6.7', '2.5', '5.8', '1.8', 'virginica']['110', '7.2', '3.6', '6.1', '2.5', 'virginica'] ['111', '6.5', '3.2', '5.1', '2', 'virginica']['112', '6.4', '2.7', '5.3', '1.9', 'virginica'] ['113', '6.8', '3', '5.5', '2.1', 'virginica']['114', '5.7', '2.5', '5', '2', 'virginica'] ['115', '5.8', '2.8', '5.1', '2.4', 'virginica']['116', '6.4', '3.2', '5.3', '2.3', 'virginica'] ['117', '6.5', '3', '5.5', '1.8', 'virginica']['118', '7.7', '3.8', '6.7', '2.2', 'virginica'] ['119', '7.7', '2.6', '6.9', '2.3', 'virginica']['120', '6', '2.2', '5', '1.5', 'virginica'] ['121', '6.9', '3.2', '5.7', '2.3', 'virginica']['122', '5.6', '2.8', '4.9', '2', 'virginica'] ['123', '7.7', '2.8', '6.7', '2', 'virginica']['124', '6.3', '2.7', '4.9', '1.8', 'virginica'] ['125', '6.7', '3.3', '5.7', '2.1', 'virginica']['126', '7.2', '3.2', '6', '1.8', 'virginica'] ['127', '6.2', '2.8', '4.8', '1.8', 'virginica']['128', '6.1', '3', '4.9', '1.8', 'virginica'] ['129', '6.4', '2.8', '5.6', '2.1', 'virginica']['130', '7.2', '3', '5.8', '1.6', 'virginica'] ['131', '7.4', '2.8', '6.1', '1.9', 'virginica']['132', '7.9', '3.8', '6.4', '2', 'virginica'] ['133', '6.4', '2.8', '5.6', '2.2', 'virginica']['134', '6.3', '2.8', '5.1', '1.5', 'virginica'] ['135', '6.1', '2.6', '5.6', '1.4', 'virginica']['136', '7.7', '3', '6.1', '2.3', 'virginica'] ['137', '6.3', '3.4', '5.6', '2.4', 'virginica']['138', '6.4', '3.1', '5.5', '1.8', 'virginica'] ['139', '6', '3', '4.8', '1.8', 'virginica']['140', '6.9', '3.1', '5.4', '2.1', 'virginica'] ['141', '6.7', '3.1', '5.6', '2.4', 'virginica']['142', '6.9', '3.1', '5.1', '2.3', 'virginica'] ['143', '5.8', '2.7', '5.1', '1.9', 'virginica']['144', '6.8', '3.2', '5.9', '2.3', 'virginica'] ['145', '6.7', '3.3', '5.7', '2.5', 'virginica']['146', '6.7', '3', '5.2', '2.3', 'virginica'] ['147', '6.3', '2.5', '5', '1.9', 'virginica']['148', '6.5', '3', '5.2', '2', 'virginica'] ['149', '6.2', '3.4', '5.4', '2.3', 'virginica']['150', '5.9', '3', '5.1', '1.8', 'virginica']
3:数据清理:去掉索引号
iris_list = [] for row in iris_data: iris_list.append(tuple(row[1:]))
每行三组数据输出是否正确
i = 0 for x in iris_list: i+=1 print(x, end=' ') if i % 3 == 0: print()
('5.1', '3.5', '1.4', '0.2', 'setosa') ('4.9', '3', '1.4', '0.2', 'setosa') ('4.7', '3.2', '1.3', '0.2', 'setosa') ('4.6', '3.1', '1.5', '0.2', 'setosa') ('5', '3.6', '1.4', '0.2', 'setosa') ('5.4', '3.9', '1.7', '0.4', 'setosa') ('4.6', '3.4', '1.4', '0.3', 'setosa') ('5', '3.4', '1.5', '0.2', 'setosa') ('4.4', '2.9', '1.4', '0.2', 'setosa') ('4.9', '3.1', '1.5', '0.1', 'setosa') ('5.4', '3.7', '1.5', '0.2', 'setosa') ('4.8', '3.4', '1.6', '0.2', 'setosa') ('4.8', '3', '1.4', '0.1', 'setosa') ('4.3', '3', '1.1', '0.1', 'setosa') ('5.8', '4', '1.2', '0.2', 'setosa') ('5.7', '4.4', '1.5', '0.4', 'setosa') ('5.4', '3.9', '1.3', '0.4', 'setosa') ('5.1', '3.5', '1.4', '0.3', 'setosa') ('5.7', '3.8', '1.7', '0.3', 'setosa') ('5.1', '3.8', '1.5', '0.3', 'setosa') ('5.4', '3.4', '1.7', '0.2', 'setosa') ('5.1', '3.7', '1.5', '0.4', 'setosa') ('4.6', '3.6', '1', '0.2', 'setosa') ('5.1', '3.3', '1.7', '0.5', 'setosa') ('4.8', '3.4', '1.9', '0.2', 'setosa') ('5', '3', '1.6', '0.2', 'setosa') ('5', '3.4', '1.6', '0.4', 'setosa') ('5.2', '3.5', '1.5', '0.2', 'setosa') ('5.2', '3.4', '1.4', '0.2', 'setosa') ('4.7', '3.2', '1.6', '0.2', 'setosa') ('4.8', '3.1', '1.6', '0.2', 'setosa') ('5.4', '3.4', '1.5', '0.4', 'setosa') ('5.2', '4.1', '1.5', '0.1', 'setosa') ('5.5', '4.2', '1.4', '0.2', 'setosa') ('4.9', '3.1', '1.5', '0.2', 'setosa') ('5', '3.2', '1.2', '0.2', 'setosa') ('5.5', '3.5', '1.3', '0.2', 'setosa') ('4.9', '3.6', '1.4', '0.1', 'setosa') ('4.4', '3', '1.3', '0.2', 'setosa') ('5.1', '3.4', '1.5', '0.2', 'setosa') ('5', '3.5', '1.3', '0.3', 'setosa') ('4.5', '2.3', '1.3', '0.3', 'setosa') ('4.4', '3.2', '1.3', '0.2', 'setosa') ('5', '3.5', '1.6', '0.6', 'setosa') ('5.1', '3.8', '1.9', '0.4', 'setosa') ('4.8', '3', '1.4', '0.3', 'setosa') ('5.1', '3.8', '1.6', '0.2', 'setosa') ('4.6', '3.2', '1.4', '0.2', 'setosa') ('5.3', '3.7', '1.5', '0.2', 'setosa') ('5', '3.3', '1.4', '0.2', 'setosa') ('7', '3.2', '4.7', '1.4', 'versicolor') ('6.4', '3.2', '4.5', '1.5', 'versicolor') ('6.9', '3.1', '4.9', '1.5', 'versicolor') ('5.5', '2.3', '4', '1.3', 'versicolor') ('6.5', '2.8', '4.6', '1.5', 'versicolor') ('5.7', '2.8', '4.5', '1.3', 'versicolor') ('6.3', '3.3', '4.7', '1.6', 'versicolor') ('4.9', '2.4', '3.3', '1', 'versicolor') ('6.6', '2.9', '4.6', '1.3', 'versicolor') ('5.2', '2.7', '3.9', '1.4', 'versicolor') ('5', '2', '3.5', '1', 'versicolor') ('5.9', '3', '4.2', '1.5', 'versicolor') ('6', '2.2', '4', '1', 'versicolor') ('6.1', '2.9', '4.7', '1.4', 'versicolor') ('5.6', '2.9', '3.6', '1.3', 'versicolor') ('6.7', '3.1', '4.4', '1.4', 'versicolor') ('5.6', '3', '4.5', '1.5', 'versicolor') ('5.8', '2.7', '4.1', '1', 'versicolor') ('6.2', '2.2', '4.5', '1.5', 'versicolor') ('5.6', '2.5', '3.9', '1.1', 'versicolor') ('5.9', '3.2', '4.8', '1.8', 'versicolor') ('6.1', '2.8', '4', '1.3', 'versicolor') ('6.3', '2.5', '4.9', '1.5', 'versicolor') ('6.1', '2.8', '4.7', '1.2', 'versicolor') ('6.4', '2.9', '4.3', '1.3', 'versicolor') ('6.6', '3', '4.4', '1.4', 'versicolor') ('6.8', '2.8', '4.8', '1.4', 'versicolor') ('6.7', '3', '5', '1.7', 'versicolor') ('6', '2.9', '4.5', '1.5', 'versicolor') ('5.7', '2.6', '3.5', '1', 'versicolor') ('5.5', '2.4', '3.8', '1.1', 'versicolor') ('5.5', '2.4', '3.7', '1', 'versicolor') ('5.8', '2.7', '3.9', '1.2', 'versicolor') ('6', '2.7', '5.1', '1.6', 'versicolor') ('5.4', '3', '4.5', '1.5', 'versicolor') ('6', '3.4', '4.5', '1.6', 'versicolor') ('6.7', '3.1', '4.7', '1.5', 'versicolor') ('6.3', '2.3', '4.4', '1.3', 'versicolor') ('5.6', '3', '4.1', '1.3', 'versicolor') ('5.5', '2.5', '4', '1.3', 'versicolor') ('5.5', '2.6', '4.4', '1.2', 'versicolor') ('6.1', '3', '4.6', '1.4', 'versicolor') ('5.8', '2.6', '4', '1.2', 'versicolor') ('5', '2.3', '3.3', '1', 'versicolor') ('5.6', '2.7', '4.2', '1.3', 'versicolor') ('5.7', '3', '4.2', '1.2', 'versicolor') ('5.7', '2.9', '4.2', '1.3', 'versicolor') ('6.2', '2.9', '4.3', '1.3', 'versicolor') ('5.1', '2.5', '3', '1.1', 'versicolor') ('5.7', '2.8', '4.1', '1.3', 'versicolor') ('6.3', '3.3', '6', '2.5', 'virginica') ('5.8', '2.7', '5.1', '1.9', 'virginica') ('7.1', '3', '5.9', '2.1', 'virginica') ('6.3', '2.9', '5.6', '1.8', 'virginica') ('6.5', '3', '5.8', '2.2', 'virginica') ('7.6', '3', '6.6', '2.1', 'virginica') ('4.9', '2.5', '4.5', '1.7', 'virginica') ('7.3', '2.9', '6.3', '1.8', 'virginica') ('6.7', '2.5', '5.8', '1.8', 'virginica') ('7.2', '3.6', '6.1', '2.5', 'virginica') ('6.5', '3.2', '5.1', '2', 'virginica') ('6.4', '2.7', '5.3', '1.9', 'virginica') ('6.8', '3', '5.5', '2.1', 'virginica') ('5.7', '2.5', '5', '2', 'virginica') ('5.8', '2.8', '5.1', '2.4', 'virginica') ('6.4', '3.2', '5.3', '2.3', 'virginica') ('6.5', '3', '5.5', '1.8', 'virginica') ('7.7', '3.8', '6.7', '2.2', 'virginica') ('7.7', '2.6', '6.9', '2.3', 'virginica') ('6', '2.2', '5', '1.5', 'virginica') ('6.9', '3.2', '5.7', '2.3', 'virginica') ('5.6', '2.8', '4.9', '2', 'virginica') ('7.7', '2.8', '6.7', '2', 'virginica') ('6.3', '2.7', '4.9', '1.8', 'virginica') ('6.7', '3.3', '5.7', '2.1', 'virginica') ('7.2', '3.2', '6', '1.8', 'virginica') ('6.2', '2.8', '4.8', '1.8', 'virginica') ('6.1', '3', '4.9', '1.8', 'virginica') ('6.4', '2.8', '5.6', '2.1', 'virginica') ('7.2', '3', '5.8', '1.6', 'virginica') ('7.4', '2.8', '6.1', '1.9', 'virginica') ('7.9', '3.8', '6.4', '2', 'virginica') ('6.4', '2.8', '5.6', '2.2', 'virginica') ('6.3', '2.8', '5.1', '1.5', 'virginica') ('6.1', '2.6', '5.6', '1.4', 'virginica') ('7.7', '3', '6.1', '2.3', 'virginica') ('6.3', '3.4', '5.6', '2.4', 'virginica') ('6.4', '3.1', '5.5', '1.8', 'virginica') ('6', '3', '4.8', '1.8', 'virginica') ('6.9', '3.1', '5.4', '2.1', 'virginica') ('6.7', '3.1', '5.6', '2.4', 'virginica') ('6.9', '3.1', '5.1', '2.3', 'virginica') ('5.8', '2.7', '5.1', '1.9', 'virginica') ('6.8', '3.2', '5.9', '2.3', 'virginica') ('6.7', '3.3', '5.7', '2.5', 'virginica') ('6.7', '3', '5.2', '2.3', 'virginica') ('6.3', '2.5', '5', '1.9', 'virginica') ('6.5', '3', '5.2', '2', 'virginica') ('6.2', '3.4', '5.4', '2.3', 'virginica') ('5.9', '3', '5.1', '1.8', 'virginica')
4:数据统计
1:创建数据类型
datatype = np.dtype([("Sepal.Length", np.str_, 40), ("Sepal.Width", np.str_, 40), ("Petal.Length", np.str_, 40), ("Petal.Width", np.str_, 40), ("Species", np.str_, 40)])
print(datatype)
[('Sepal.Length', '<U40'), ('Sepal.Width', '<U40'), ('Petal.Length', '<U40'), ('Petal.Width', '<U40'), ('Species', '<U40')]
2:创建二维数组
iris_data = np.array(iris_list, dtype = datatype)
print(iris_data)
[('5.1', '3.5', '1.4', '0.2', 'setosa') ('4.9', '3', '1.4', '0.2', 'setosa') ('4.7', '3.2', '1.3', '0.2', 'setosa') ('4.6', '3.1', '1.5', '0.2', 'setosa') ('5', '3.6', '1.4', '0.2', 'setosa') ('5.4', '3.9', '1.7', '0.4', 'setosa') ('4.6', '3.4', '1.4', '0.3', 'setosa') ('5', '3.4', '1.5', '0.2', 'setosa') ('4.4', '2.9', '1.4', '0.2', 'setosa') ('4.9', '3.1', '1.5', '0.1', 'setosa') ('5.4', '3.7', '1.5', '0.2', 'setosa') ('4.8', '3.4', '1.6', '0.2', 'setosa') ('4.8', '3', '1.4', '0.1', 'setosa') ('4.3', '3', '1.1', '0.1', 'setosa') ('5.8', '4', '1.2', '0.2', 'setosa') ('5.7', '4.4', '1.5', '0.4', 'setosa') ('5.4', '3.9', '1.3', '0.4', 'setosa') ('5.1', '3.5', '1.4', '0.3', 'setosa') ('5.7', '3.8', '1.7', '0.3', 'setosa') ('5.1', '3.8', '1.5', '0.3', 'setosa') ('5.4', '3.4', '1.7', '0.2', 'setosa') ('5.1', '3.7', '1.5', '0.4', 'setosa') ('4.6', '3.6', '1', '0.2', 'setosa') ('5.1', '3.3', '1.7', '0.5', 'setosa') ('4.8', '3.4', '1.9', '0.2', 'setosa') ('5', '3', '1.6', '0.2', 'setosa') ('5', '3.4', '1.6', '0.4', 'setosa') ('5.2', '3.5', '1.5', '0.2', 'setosa') ('5.2', '3.4', '1.4', '0.2', 'setosa') ('4.7', '3.2', '1.6', '0.2', 'setosa') ('4.8', '3.1', '1.6', '0.2', 'setosa') ('5.4', '3.4', '1.5', '0.4', 'setosa') ('5.2', '4.1', '1.5', '0.1', 'setosa') ('5.5', '4.2', '1.4', '0.2', 'setosa') ('4.9', '3.1', '1.5', '0.2', 'setosa') ('5', '3.2', '1.2', '0.2', 'setosa') ('5.5', '3.5', '1.3', '0.2', 'setosa') ('4.9', '3.6', '1.4', '0.1', 'setosa') ('4.4', '3', '1.3', '0.2', 'setosa') ('5.1', '3.4', '1.5', '0.2', 'setosa') ('5', '3.5', '1.3', '0.3', 'setosa') ('4.5', '2.3', '1.3', '0.3', 'setosa') ('4.4', '3.2', '1.3', '0.2', 'setosa') ('5', '3.5', '1.6', '0.6', 'setosa') ('5.1', '3.8', '1.9', '0.4', 'setosa') ('4.8', '3', '1.4', '0.3', 'setosa') ('5.1', '3.8', '1.6', '0.2', 'setosa') ('4.6', '3.2', '1.4', '0.2', 'setosa') ('5.3', '3.7', '1.5', '0.2', 'setosa') ('5', '3.3', '1.4', '0.2', 'setosa') ('7', '3.2', '4.7', '1.4', 'versicolor') ('6.4', '3.2', '4.5', '1.5', 'versicolor') ('6.9', '3.1', '4.9', '1.5', 'versicolor') ('5.5', '2.3', '4', '1.3', 'versicolor') ('6.5', '2.8', '4.6', '1.5', 'versicolor') ('5.7', '2.8', '4.5', '1.3', 'versicolor') ('6.3', '3.3', '4.7', '1.6', 'versicolor') ('4.9', '2.4', '3.3', '1', 'versicolor') ('6.6', '2.9', '4.6', '1.3', 'versicolor') ('5.2', '2.7', '3.9', '1.4', 'versicolor') ('5', '2', '3.5', '1', 'versicolor') ('5.9', '3', '4.2', '1.5', 'versicolor') ('6', '2.2', '4', '1', 'versicolor') ('6.1', '2.9', '4.7', '1.4', 'versicolor') ('5.6', '2.9', '3.6', '1.3', 'versicolor') ('6.7', '3.1', '4.4', '1.4', 'versicolor') ('5.6', '3', '4.5', '1.5', 'versicolor') ('5.8', '2.7', '4.1', '1', 'versicolor') ('6.2', '2.2', '4.5', '1.5', 'versicolor') ('5.6', '2.5', '3.9', '1.1', 'versicolor') ('5.9', '3.2', '4.8', '1.8', 'versicolor') ('6.1', '2.8', '4', '1.3', 'versicolor') ('6.3', '2.5', '4.9', '1.5', 'versicolor') ('6.1', '2.8', '4.7', '1.2', 'versicolor') ('6.4', '2.9', '4.3', '1.3', 'versicolor') ('6.6', '3', '4.4', '1.4', 'versicolor') ('6.8', '2.8', '4.8', '1.4', 'versicolor') ('6.7', '3', '5', '1.7', 'versicolor') ('6', '2.9', '4.5', '1.5', 'versicolor') ('5.7', '2.6', '3.5', '1', 'versicolor') ('5.5', '2.4', '3.8', '1.1', 'versicolor') ('5.5', '2.4', '3.7', '1', 'versicolor') ('5.8', '2.7', '3.9', '1.2', 'versicolor') ('6', '2.7', '5.1', '1.6', 'versicolor') ('5.4', '3', '4.5', '1.5', 'versicolor') ('6', '3.4', '4.5', '1.6', 'versicolor') ('6.7', '3.1', '4.7', '1.5', 'versicolor') ('6.3', '2.3', '4.4', '1.3', 'versicolor') ('5.6', '3', '4.1', '1.3', 'versicolor') ('5.5', '2.5', '4', '1.3', 'versicolor') ('5.5', '2.6', '4.4', '1.2', 'versicolor') ('6.1', '3', '4.6', '1.4', 'versicolor') ('5.8', '2.6', '4', '1.2', 'versicolor') ('5', '2.3', '3.3', '1', 'versicolor') ('5.6', '2.7', '4.2', '1.3', 'versicolor') ('5.7', '3', '4.2', '1.2', 'versicolor') ('5.7', '2.9', '4.2', '1.3', 'versicolor') ('6.2', '2.9', '4.3', '1.3', 'versicolor') ('5.1', '2.5', '3', '1.1', 'versicolor') ('5.7', '2.8', '4.1', '1.3', 'versicolor') ('6.3', '3.3', '6', '2.5', 'virginica') ('5.8', '2.7', '5.1', '1.9', 'virginica') ('7.1', '3', '5.9', '2.1', 'virginica') ('6.3', '2.9', '5.6', '1.8', 'virginica') ('6.5', '3', '5.8', '2.2', 'virginica') ('7.6', '3', '6.6', '2.1', 'virginica') ('4.9', '2.5', '4.5', '1.7', 'virginica') ('7.3', '2.9', '6.3', '1.8', 'virginica') ('6.7', '2.5', '5.8', '1.8', 'virginica') ('7.2', '3.6', '6.1', '2.5', 'virginica') ('6.5', '3.2', '5.1', '2', 'virginica') ('6.4', '2.7', '5.3', '1.9', 'virginica') ('6.8', '3', '5.5', '2.1', 'virginica') ('5.7', '2.5', '5', '2', 'virginica') ('5.8', '2.8', '5.1', '2.4', 'virginica') ('6.4', '3.2', '5.3', '2.3', 'virginica') ('6.5', '3', '5.5', '1.8', 'virginica') ('7.7', '3.8', '6.7', '2.2', 'virginica') ('7.7', '2.6', '6.9', '2.3', 'virginica') ('6', '2.2', '5', '1.5', 'virginica') ('6.9', '3.2', '5.7', '2.3', 'virginica') ('5.6', '2.8', '4.9', '2', 'virginica') ('7.7', '2.8', '6.7', '2', 'virginica') ('6.3', '2.7', '4.9', '1.8', 'virginica') ('6.7', '3.3', '5.7', '2.1', 'virginica') ('7.2', '3.2', '6', '1.8', 'virginica') ('6.2', '2.8', '4.8', '1.8', 'virginica') ('6.1', '3', '4.9', '1.8', 'virginica') ('6.4', '2.8', '5.6', '2.1', 'virginica') ('7.2', '3', '5.8', '1.6', 'virginica') ('7.4', '2.8', '6.1', '1.9', 'virginica') ('7.9', '3.8', '6.4', '2', 'virginica') ('6.4', '2.8', '5.6', '2.2', 'virginica') ('6.3', '2.8', '5.1', '1.5', 'virginica') ('6.1', '2.6', '5.6', '1.4', 'virginica') ('7.7', '3', '6.1', '2.3', 'virginica') ('6.3', '3.4', '5.6', '2.4', 'virginica') ('6.4', '3.1', '5.5', '1.8', 'virginica') ('6', '3', '4.8', '1.8', 'virginica') ('6.9', '3.1', '5.4', '2.1', 'virginica') ('6.7', '3.1', '5.6', '2.4', 'virginica') ('6.9', '3.1', '5.1', '2.3', 'virginica') ('5.8', '2.7', '5.1', '1.9', 'virginica') ('6.8', '3.2', '5.9', '2.3', 'virginica') ('6.7', '3.3', '5.7', '2.5', 'virginica') ('6.7', '3', '5.2', '2.3', 'virginica') ('6.3', '2.5', '5', '1.9', 'virginica') ('6.5', '3', '5.2', '2', 'virginica') ('6.2', '3.4', '5.4', '2.3', 'virginica') ('5.9', '3', '5.1', '1.8', 'virginica')]
3:将待处理数据的类型转化为float类型
PetalLength = iris_data["Petal.Length"].astype(float)
print(PetalLength)
[1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2 1.5 1.3 1.4 1.7 1.5 1.7 1.5 1. 1.7 1.9 1.6 1.6 1.5 1.4 1.6 1.6 1.5 1.5 1.4 1.5 1.2 1.3 1.4 1.3 1.5 1.3 1.3 1.3 1.6 1.9 1.4 1.6 1.4 1.5 1.4 4.7 4.5 4.9 4. 4.6 4.5 4.7 3.3 4.6 3.9 3.5 4.2 4. 4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4. 4.9 4.7 4.3 4.4 4.8 5. 4.5 3.5 3.8 3.7 3.9 5.1 4.5 4.5 4.7 4.4 4.1 4. 4.4 4.6 4. 3.3 4.2 4.2 4.2 4.3 3. 4.1 6. 5.1 5.9 5.6 5.8 6.6 4.5 6.3 5.8 6.1 5.1 5.3 5.5 5. 5.1 5.3 5.5 6.7 6.9 5. 5.7 4.9 6.7 4.9 5.7 6. 4.8 4.9 5.6 5.8 6.1 6.4 5.6 5.1 5.6 6.1 5.6 5.5 4.8 5.4 5.6 5.1 5.1 5.9 5.7 5.2 5. 5.2 5.4 5.1]
4:排序
np.sort(PetalLength)
print(np.sort(PetalLength))
[1. 1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.9 1.9 3. 3.3 3.3 3.5 3.5 3.6 3.7 3.8 3.9 3.9 3.9 4. 4. 4. 4. 4. 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 5. 5. 5. 5. 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.3 5.3 5.4 5.4 5.5 5.5 5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.8 5.8 5.8 5.9 5.9 6. 6. 6.1 6.1 6.1 6.3 6.4 6.6 6.7 6.7 6.9]
5:数组去重
np.unique(PetalLength)
print(np.unique(PetalLength))
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 3. 3.3 3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6. 6.1 6.3 6.4 6.6 6.7 6.9]
6:对指定列求和、均值、标准差、方差、最小值和最大值
6-1:求和
print(np.sum(PetalLength))
563.7
6-2:均值
print(np.mean(PetalLength))
3.7580000000000005
6-3:标准差
print(np.std(PetalLength))
1.759404065775303
6-4:方差
print(np.var(PetalLength))
3.0955026666666665
6-5:最小值
print(np.min(PetalLength))
1.0
6-6:最大值
print(np.max(PetalLength))
6.9
完整代码
import numpy as np import csv iris_data = [] with open("iris.csv") as csvfile: csv_reader = csv.reader(csvfile) birth_header = next(csv_reader) for row in csv_reader: iris_data.append(row) iris_list = [] for row in iris_data: iris_list.append(tuple(row[1:])) datatype = np.dtype([("Sepal.Length", np.str_, 40), ("Sepal.Width", np.str_, 40), ("Petal.Length", np.str_, 40), ("Petal.Width", np.str_, 40), ("Species", np.str_, 40)]) iris_data = np.array(iris_list, dtype = datatype) PetalLength = iris_data["Petal.Length"].astype(float) np.sort(PetalLength) np.unique(PetalLength) print(np.sum(PetalLength))#求和 print(np.mean(PetalLength))#均值 print(np.std(PetalLength))#标准差 print(np.var(PetalLength))#方差 print(np.min(PetalLength))#最小值 print(np.max(PetalLength))#最大值