一、题目描述:
给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例 1:
输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]
示例 2:
输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
提示:
树中节点数在范围 [1, 104] 内
0 <= Node.val <= 104
树中每个节点的值都是 唯一 的
题目数据保证输入是一棵有效的二叉搜索树
0 <= low <= high <= 104
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/trim-a-binary-search-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、思路分析:
递归处理,有四种情况。\
1 - 当前节点为null,无需修剪返回null即可。\
2 - 正常区间,修剪左右子树 \
3 - 当前节点小于low,删除节点,保留修剪后的右子树(因为右子树可能有节点在[low,high]区间) \
4 - 当前节点大于high,删除节点,保留修剪后的左子树(因为左子树可能有节点在[low,high]区间)\
三、AC 代码:
class Solution {
public TreeNode trimBST(TreeNode root, int L, int R) {
if (root == null) return root;
if (root.val > R) return trimBST(root.left, L, R);
if (root.val < L) return trimBST(root.right, L, R);
root.left = trimBST(root.left, L, R);
root.right = trimBST(root.right, L, R);
return root;
}
}
四、总结:
掘友们,解题不易,留下个赞或评论再走吧!谢啦~ 💐
希望对你有帮助
期待下次再见~