【16】查看中间层特征矩阵并保存图像与参数

简介: 【16】查看中间层特征矩阵并保存图像与参数

网络模型backbone我使用了之前搭建过的MobileNetV3,具体的搭建过程可以查看:【20】MobileNetV3


然后由于此次任务需要的是输出其中的中间特征矩阵,所以前向传播的部分代码需要修改一下:


参考代码如下:


backbone.py


import torch
import torch.nn as nn
import torchvision
num_class = 5
# 定义h-swith激活函数
class HardSwish(nn.Module):
    def __init__(self, inplace=True):
        super(HardSwish, self).__init__()
        self.relu6 = nn.ReLU6(inplace)
    def forward(self, x):
        return x*self.relu6(x+3)/6
# DW卷积
def ConvBNActivation(in_channels,out_channels,kernel_size,stride,activate):
    # 通过设置padding达到当stride=2时,hw减半的效果。此时不与kernel_size有关,所实现的公式为: padding=(kernel_size-1)//2
    # 当kernel_size=3,padding=1时: stride=2 hw减半, stride=1 hw不变
    # 当kernel_size=5,padding=2时: stride=2 hw减半, stride=1 hw不变
    # 从而达到了使用 stride 来控制hw的效果, 不用去关心kernel_size的大小,控制单一变量
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, groups=in_channels),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True) if activate == 'relu' else HardSwish()
        )
# PW卷积(接全连接层)
def Conv1x1BN(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels)
        )
# 普通的1x1卷积
def Conv1x1BNActivation(in_channels,out_channels,activate):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True) if activate == 'relu' else HardSwish()
        )
# 注意力机制(SE模块)
class SqueezeAndExcite(nn.Module):
    def __init__(self, in_channels, out_channels, se_kernel_size, divide=4):
        super(SqueezeAndExcite, self).__init__()
        mid_channels = in_channels // divide   # 维度变为原来的1/4
        # 将当前的channel平均池化成1
        self.pool = nn.AvgPool2d(kernel_size=se_kernel_size,stride=1)
        # 两个全连接层 最后输出每层channel的权值
        self.SEblock = nn.Sequential(
            nn.Linear(in_features=in_channels, out_features=mid_channels),
            nn.ReLU6(inplace=True),
            nn.Linear(in_features=mid_channels, out_features=out_channels),
            HardSwish(inplace=True),
        )
    def forward(self, x):
        b, c, h, w = x.size()
        out = self.pool(x)       # 不管当前的 h,w 为多少, 全部池化为1
        out = out.view(b, -1)    # 打平处理,与全连接层相连
        # 获取注意力机制后的权重
        out = self.SEblock(out)
        # out是每层channel的权重,需要扩维才能与原特征矩阵相乘
        out = out.view(b, c, 1, 1)  # 增维
        return out * x
class SEInvertedBottleneck(nn.Module):
    def __init__(self, in_channels, mid_channels, out_channels, kernel_size, stride, activate, use_se, se_kernel_size=1):
        super(SEInvertedBottleneck, self).__init__()
        self.stride = stride
        self.use_se = use_se
        self.in_channels = in_channels
        self.out_channels = out_channels
        # mid_channels = (in_channels * expansion_factor)
        # 普通1x1卷积升维操作
        self.conv = Conv1x1BNActivation(in_channels, mid_channels,activate)
        # DW卷积 维度不变,但可通过stride改变尺寸 groups=in_channels
        self.depth_conv = ConvBNActivation(mid_channels, mid_channels, kernel_size,stride,activate)
        # 注意力机制的使用判断
        if self.use_se:
            self.SEblock = SqueezeAndExcite(mid_channels, mid_channels, se_kernel_size)
        # PW卷积 降维操作
        self.point_conv = Conv1x1BNActivation(mid_channels, out_channels,activate)
        # shortcut的使用判断
        if self.stride == 1:
            self.shortcut = Conv1x1BN(in_channels, out_channels)
    def forward(self, x):
        # DW卷积
        out = self.depth_conv(self.conv(x))
        # 当 use_se=True 时使用注意力机制
        if self.use_se:
            out = self.SEblock(out)
        # PW卷积
        out = self.point_conv(out)
        # 残差操作
        # 第一种: 只看步长,步长相同shape不一样的输入输出使用1x1卷积使其相加
        # out = (out + self.shortcut(x)) if self.stride == 1 else out
        # 第二种: 同时满足步长与输入输出的channel, 不使用1x1卷积强行升维
        out = (out + x) if self.stride == 1 and self.in_channels == self.out_channels else out
        return out
class MobileNetV3(nn.Module):
    def __init__(self, num_classes=num_class):
        super(MobileNetV3, self).__init__()
        self.type = type
        # 224x224x3 conv2d 3 -> 16 SE=False HS s=2
        self.first_conv = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(16),
            HardSwish(inplace=True),
        )
        # torch.Size([1, 16, 112, 112])
        # MobileNetV3_Large 网络结构
        # torch.Size([1, 16, 112, 112]) 16 -> 16 -> 16 SE=False RE s=1
        self.block1 = SEInvertedBottleneck(in_channels=16, mid_channels=16, out_channels=16, kernel_size=3, stride=1,activate='relu', use_se=False)
        # torch.Size([1, 16, 112, 112]) 16 -> 64 -> 24 SE=False RE s=2
        self.block2 = SEInvertedBottleneck(in_channels=16, mid_channels=64, out_channels=24, kernel_size=3, stride=2, activate='relu', use_se=False)
        # torch.Size([1, 24, 56, 56])   24 -> 72 -> 24 SE=False RE s=1
        self.block3 = SEInvertedBottleneck(in_channels=24, mid_channels=72, out_channels=24, kernel_size=3, stride=1, activate='relu', use_se=False)
        # torch.Size([1, 24, 56, 56])   24 -> 72 -> 40 SE=True RE s=2
        self.block4 = SEInvertedBottleneck(in_channels=24, mid_channels=72, out_channels=40, kernel_size=5, stride=2,activate='relu', use_se=True, se_kernel_size=28)
        # torch.Size([1, 40, 28, 28])   40 -> 120 -> 40 SE=True RE s=1
        self.block5 = SEInvertedBottleneck(in_channels=40, mid_channels=120, out_channels=40, kernel_size=5, stride=1,activate='relu', use_se=True, se_kernel_size=28)
        # torch.Size([1, 40, 28, 28])   40 -> 120 -> 40 SE=True RE s=1
        self.block6 = SEInvertedBottleneck(in_channels=40, mid_channels=120, out_channels=40, kernel_size=5, stride=1,activate='relu', use_se=True, se_kernel_size=28)
        # torch.Size([1, 40, 28, 28])   40 -> 240 -> 80 SE=False HS s=1
        self.block7 = SEInvertedBottleneck(in_channels=40, mid_channels=240, out_channels=80, kernel_size=3, stride=1,activate='hswish', use_se=False)
        # torch.Size([1, 80, 28, 28])   80 -> 200 -> 80 SE=False HS s=1
        self.block8 = SEInvertedBottleneck(in_channels=80, mid_channels=200, out_channels=80, kernel_size=3, stride=1,activate='hswish', use_se=False)
        # torch.Size([1, 80, 28, 28])   80 -> 184 -> 80 SE=False HS s=2
        self.block9 = SEInvertedBottleneck(in_channels=80, mid_channels=184, out_channels=80, kernel_size=3, stride=2,activate='hswish', use_se=False)
        # torch.Size([1, 80, 14, 14])   80 -> 184 -> 80 SE=False HS s=1
        self.block10 = SEInvertedBottleneck(in_channels=80, mid_channels=184, out_channels=80, kernel_size=3, stride=1,activate='hswish', use_se=False)
        # torch.Size([1, 80, 14, 14])   80 -> 480 -> 112 SE=True HS s=1
        self.block11 = SEInvertedBottleneck(in_channels=80, mid_channels=480, out_channels=112, kernel_size=3, stride=1,activate='hswish', use_se=True, se_kernel_size=14)
        # torch.Size([1, 112, 14, 14])  112 -> 672 -> 112 SE=True HS s=1
        self.block12 = SEInvertedBottleneck(in_channels=112, mid_channels=672, out_channels=112, kernel_size=3, stride=1,activate='hswish', use_se=True, se_kernel_size=14)
        # torch.Size([1, 112, 14, 14])  112 -> 672 -> 160 SE=True HS s=2
        self.block13 = SEInvertedBottleneck(in_channels=112, mid_channels=672, out_channels=160, kernel_size=5, stride=2,activate='hswish', use_se=True,se_kernel_size=7)
        # torch.Size([1, 160, 7, 7])    160 -> 960 -> 160 SE=True HS s=1
        self.block14 = SEInvertedBottleneck(in_channels=160, mid_channels=960, out_channels=160, kernel_size=5, stride=1,activate='hswish', use_se=True,se_kernel_size=7)
        # torch.Size([1, 160, 7, 7])    160 -> 960 -> 160 SE=True HS s=1
        self.block15 = SEInvertedBottleneck(in_channels=160, mid_channels=960, out_channels=160, kernel_size=5, stride=1,activate='hswish', use_se=True,se_kernel_size=7)
        # torch.Size([1, 160, 7, 7])
        # 相比MobileNetV2,尾部结构改变,,变得更加的高效
        self.large_last_stage = nn.Sequential(
            nn.Conv2d(in_channels=160, out_channels=960, kernel_size=1, stride=1),
            nn.BatchNorm2d(960),
            HardSwish(inplace=True),
            nn.AvgPool2d(kernel_size=7, stride=1),
            nn.Conv2d(in_channels=960, out_channels=1280, kernel_size=1, stride=1),
            HardSwish(inplace=True),
        )
        self.classifier = nn.Linear(in_features=1280,out_features=num_classes)
        self.init_params()
    # 初始化权重
    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.Linear):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    def forward(self, x):
        outputs = []
        x = self.first_conv(x)      # torch.Size([1, 16, 112, 112])
        outputs.append(x)
        x = self.block1(x)
        outputs.append(x)
        x = self.block2(x)
        outputs.append(x)
        x = self.block3(x)
        outputs.append(x)
        x = self.block4(x)
        outputs.append(x)
        x = self.block5(x)
        outputs.append(x)
        x = self.block6(x)
        outputs.append(x)
        x = self.block7(x)
        outputs.append(x)
        x = self.block8(x)
        outputs.append(x)
        x = self.block9(x)
        outputs.append(x)
        x = self.block10(x)
        outputs.append(x)
        x = self.block11(x)
        outputs.append(x)
        x = self.block12(x)
        outputs.append(x)
        x = self.block13(x)
        outputs.append(x)
        x = self.block14(x)
        outputs.append(x)
        x = self.block15(x)           # torch.Size([1, 160, 7, 7])
        outputs.append(x)
        x = self.large_last_stage(x)  # torch.Size([1, 1280, 1, 1])
        # outputs.append(x)
        x = x.view(x.size(0), -1)   # torch.Size([1, 1280])
        x = self.classifier(x)      # torch.Size([1, 5])
        return outputs
def MobileNetV3_large():
    return MobileNetV3()
if __name__ == '__main__':
    model = MobileNetV3_large()
    # print(model)
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    # print(out.shape)
    torch.save(model.state_dict(), 'MobileNetV3_Large.mdl')


主要思路:

主要思路就是经过卷积之后的特征矩阵保存在一个列表中,然后依次对其进行读取并利用plt进行显示与保存图像,而且具体是查看特征矩阵的每层channel的图像:plt.imshow(im[:, :, i], cmap=‘gray’)

analyze_feature_map.py


import torch
from backbone import MobileNetV3_large
import matplotlib.pyplot as plt
import numpy as np
import os
from PIL import Image
from torchvision import transforms
# 图像的格式转换
data_transform = transforms.Compose(
    [transforms.Resize(256),
     transforms.CenterCrop(224),
     transforms.ToTensor(),
     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
# create model
model = MobileNetV3_large()
# load model weights
model_weight_path = 'MobileNetV3_Large.mdl'
model.load_state_dict(torch.load(model_weight_path))
# print(model)
# load image
# img = Image.open('./Brightprint_above_1.jpg')
img = Image.open('./Brightprint_side_1.jpg')
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)
# print(img.shape)    # torch.Size([1, 3, 224, 224])
# forward
out_put = model(img)
print(out_put)
# for feature_map in out_put:
for batchidx, feature_map in enumerate(out_put):
    # 保存中间层的参数
    with open('parameter.txt', mode='a') as fw:
        fw.writelines('block{}:parameter'.format(batchidx))
        fw.writelines('\n\t')
        fw.writelines(str(feature_map))
        fw.writelines('\n\t\n\t')
    print('batchidx = ', batchidx)
    # [N, C, H, W] -> [C, H, W]
    im = np.squeeze(feature_map.detach().numpy())
    # [C, H, W] -> [H, W, C]
    # 需要改变才可以正常显示图像
    im = np.transpose(im, [1, 2, 0])
    # show top 16 feature maps
    plt.figure()
    for i in range(16):
        ax = plt.subplot(4, 4, i+1)
        # [H, W, C]  cmap='gray' :设置为灰度图, [:, :, i]选择对channels进行切分
        plt.imshow(im[:, :, i], cmap='gray')
    # 保存图像的方法
    plt.savefig('block{}_outputs.jpg'.format(batchidx))
    # plt.imsave(batchidx, arr, format='jpg')
    plt.show()


参考链接:


https://www.bilibili.com/video/BV1z7411f7za

Python中读取,显示,保存图片的方法


目录
相关文章
|
9月前
一个16位的数以4位为一组分割,然后将各部分相加获取最终结果。
一个16位的数以4位为一组分割,然后将各部分相加获取最终结果。
|
移动开发 文字识别 算法
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
本文简要介绍Pattern Recognition 2019论文“SegLink++: Detecting Dense and Arbitrary-shaped Scene Text by Instance-aware Component Grouping”的主要工作。该论文提出一种对文字实例敏感的自下而上的文字检测方法,解决了自然场景中密集文本和不规则文本的检测问题。
1969 0
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
|
8天前
|
算法 计算机视觉
RT-DETR改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
RT-DETR改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
30 9
RT-DETR改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
|
11天前
|
算法 计算机视觉
YOLOv11改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
YOLOv11改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
20 0
YOLOv11改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
|
9月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进-论文笔记】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;2)使用新算法确定初始采样位置;3)应用动态偏移调整采样位置;4)优化模型参数和计算效率。AKConv已应用于YOLOv8,提高网络性能。相关代码可在<https://github.com/CV-ZhangXin/AKConv>找到。
|
5月前
|
机器学习/深度学习 数据挖掘
数据特征
数据特征
162 1
|
7月前
|
PyTorch 测试技术 算法框架/工具
【YOLOv8改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 | 小目标
YOLO目标检测专栏探讨了模型优化,提出SPConv,一种新卷积操作,减少特征冗余,提升效率。SPConv将特征分为代表性和不确定部分,分别处理,再融合。实验显示,SPConv在速度和准确性上超越现有基准,减少FLOPs和参数。论文和PyTorch代码已公开。更多详情及实战案例见CSDN博客链接。
|
7月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv10改进 -卷积Conv】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;2)使用新算法确定初始采样位置;3)应用动态偏移调整采样位置;4)优化模型参数和计算效率。AKConv已应用于YOLOv8,提高网络性能。相关代码可在<https://github.com/CV-ZhangXin/AKConv>找到。
|
9月前
|
机器学习/深度学习 编解码 自然语言处理
LRP-QViT完美而来 | 输出层分配相关性+剪切通道让Swin Transformer量化后居然涨1.5个点
LRP-QViT完美而来 | 输出层分配相关性+剪切通道让Swin Transformer量化后居然涨1.5个点
325 0
|
资源调度 PyTorch 算法框架/工具
pytorch 如何生成指定位置、尺度参数的随机高斯矩阵,并指定这个随机矩阵的形式
在上述代码中,我们使用 torch.normal(mean=mu, std=sigma, size=(m, n)) 函数直接生成了一个形状为 (m, n) 的随机高斯矩阵 data,其中 mean 参数指定了均值,std 参数指定了标准差。 需要注意的是,与 torch.randn() 不同,torch.normal() 生成的是具有指定均值和标准差的高斯分布,因此生成的随机矩阵不一定是标准正态分布。如果需要生成标准正态分布随机矩阵,可以将 mean 参数设置为 0,std 参数设置为 1。
1251 1