说一说Kafka性能高的原因???

简介: 说一说Kafka性能高的原因???

一、顺序读写


kafka不基于内存,而是硬盘存储,因此消息堆积能力更强

顺序写利用磁盘的顺序访问速度可以接近内存, kafka的消息都是append操作,partition是有序的, 节省了磁盘的寻道时间,同时通过批量操作、节省写入次数,partition物理 上分为多个segment存储,方便删除


二、传统的缺陷:


●读取磁盘文件数据到内核缓冲区

●将内核缓冲区的数据copy到用户缓冲区

●将用户缓冲区的数据copy到socket的发送缓冲区

●将socket发送缓冲区中的数据发送到网卡、进行传输


三、零拷贝:


●直接将内核缓冲区的数据发送到网卡传输

●使用的是操作系统的指令支持

kafka不太依赖jvm,主要理由操作系统的pageCache,如果生产消费速率相当,则直接用pageCache交换数据,不需要经过磁盘I0

目录
相关文章
|
消息中间件 存储 网络协议
【Kafka】Kafka 性能高的原因分析
【4月更文挑战第5天】【Kafka】Kafka 性能高的原因分析
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
456 4
|
消息中间件 弹性计算 测试技术
如何快速实现 Kafka 性能压测
如何快速实现 Kafka 性能压测
90171 85
|
消息中间件 存储 监控
说说如何解决RocketMq消息积压?为什么Kafka性能比RocketMq高?它们区别是什么?
【10月更文挑战第8天】在分布式系统中,消息队列扮演着至关重要的角色,它不仅能够解耦系统组件,还能提供异步处理、流量削峰和消息持久化等功能。在众多的消息队列产品中,RocketMQ和Kafka无疑是其中的佼佼者。本文将围绕如何解决RocketMQ消息积压、为什么Kafka性能比RocketMQ高以及它们之间的区别进行深入探讨。
634 1
|
图形学 人工智能 C#
从零起步,到亲手实现:一步步教你用Unity引擎搭建出令人惊叹的3D游戏世界,绝不错过的初学者友好型超详细指南 ——兼探索游戏设计奥秘与实践编程技巧的完美结合之旅
【8月更文挑战第31天】本文介绍如何使用Unity引擎从零开始创建简单的3D游戏世界,涵盖游戏对象创建、物理模拟、用户输入处理及动画效果。Unity是一款强大的跨平台游戏开发工具,支持多种编程语言,具有直观编辑器和丰富文档。文章指导读者创建新项目、添加立方体对象、编写移动脚本,并引入基础动画,帮助初学者快速掌握Unity开发核心概念,迈出游戏制作的第一步。
1246 1
|
消息中间件 传感器 缓存
为什么Kafka能秒杀众多消息队列?揭秘它背后的五大性能神器,让你秒懂Kafka的极速之道!
【8月更文挑战第24天】Apache Kafka作为分布式流处理平台的领先者,凭借其出色的性能和扩展能力广受好评。本文通过案例分析,深入探讨Kafka实现高性能的关键因素:分区与并行处理显著提升吞吐量;批量发送结合压缩算法减少网络I/O次数及数据量;顺序写盘与页缓存机制提高写入效率;Zero-Copy技术降低CPU消耗;集群扩展与负载均衡确保系统稳定性和可靠性。这些机制共同作用,使Kafka能够在处理大规模数据流时表现出色。
298 3
|
消息中间件 Kafka 测试技术
【Azure 事件中心】使用Kafka的性能测试工具(kafka-producer-perf-test)测试生产者发送消息到Azure Event Hub的性能
【Azure 事件中心】使用Kafka的性能测试工具(kafka-producer-perf-test)测试生产者发送消息到Azure Event Hub的性能
352 2
|
消息中间件 监控 固态存储
性能工具之 Kafka 快速 BenchMark 测试示例
【5月更文挑战第24天】性能工具之 Kafka 快速 BenchMark 测试示例
1330 1
性能工具之 Kafka 快速 BenchMark 测试示例
|
消息中间件 存储 缓存
面试题Kafka问题之Kafka的生产消费基本流程如何解决
面试题Kafka问题之Kafka的生产消费基本流程如何解决
190 1
|
消息中间件 存储 网络协议
Kafka 线程模型痛点攻克: 提升分区写入 2 倍性能
Apache Kafka的单分区写入性能在某些严格保序场景中至关重要,但其现有线程模型限制了性能发挥。本文分析了Kafka的串行处理模型,包括SocketServer、KafkaChannel、RequestChannel等组件,指出其通过KafkaChannel状态机确保请求顺序处理,导致处理效率低下。AutoMQ提出流水线处理模型,简化KafkaChannel状态机,实现网络解析、校验定序和持久化的阶段间并行化,提高处理效率。测试结果显示,AutoMQ的极限吞吐是Kafka的2倍,P99延迟降低至11ms。
380 3
Kafka 线程模型痛点攻克: 提升分区写入 2 倍性能