【Docker+springboot】集成部署ES+Kibana+IK(中)

简介: 【Docker+springboot】集成部署ES+Kibana+IK(中)
  • 字符串,全文检索
GET bank/_search
{
  "query": {
    "match": {
      "address": "kings"
    }
  }
}

全文检索,最终会按照评分进行排序,会对检索条件进行分词匹配。

查询结果:

{
  "took" : 30,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 5.990829,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "20",
        "_score" : 5.990829,
        "_source" : {
          "account_number" : 20,
          "balance" : 16418,
          "firstname" : "Elinor",
          "lastname" : "Ratliff",
          "age" : 36,
          "gender" : "M",
          "address" : "282 Kings Place",
          "employer" : "Scentric",
          "email" : "elinorratliff@scentric.com",
          "city" : "Ribera",
          "state" : "WA"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "722",
        "_score" : 5.990829,
        "_source" : {
          "account_number" : 722,
          "balance" : 27256,
          "firstname" : "Roberts",
          "lastname" : "Beasley",
          "age" : 34,
          "gender" : "F",
          "address" : "305 Kings Hwy",
          "employer" : "Quintity",
          "email" : "robertsbeasley@quintity.com",
          "city" : "Hayden",
          "state" : "PA"
        }
      }
    ]
  }
}
(4) match_phrase [短句匹配]


将需要匹配的值当成一整个单词(不分词)进行检索

GET bank/_search
{
  "query": {
    "match_phrase": {
      "address": "mill road"
    }
  }
}

查处address中包含mill_road的所有记录,并给出相关性得分

查看结果:

{
  "took" : 32,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 8.926605,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 8.926605,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      }
    ]
  }
}

match_phrase和Match的区别,观察如下实例:

GET bank/_search
{
  "query": {
    "match_phrase": {
      "address": "990 Mill"
    }
  }
}


查询结果

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 10.806405,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 10.806405,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      }
    ]
  }
}


使用match的keyword


GET bank/_search
{
  "query": {
    "match": {
      "address.keyword": "990 Mill"
    }
  }
}


查询结果,一条也未匹配到


{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  }
}


修改匹配条件为“990 Mill Road”


GET bank/_search
{
  "query": {
    "match": {
      "address.keyword": "990 Mill Road"
    }
  }
}


查询出一条数据


{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 6.5032897,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 6.5032897,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      }
    ]
  }
}

文本字段的匹配,使用keyword,匹配的条件就是要显示字段的全部值,要进行精确匹配的。

match_phrase是做短语匹配,只要文本中包含匹配条件,就能匹配到。


(5)multi_math【多字段匹配】
GET bank/_search
{
  "query": {
    "multi_match": {
      "query": "mill",
      "fields": [
        "state",
        "address"
      ]
    }
  }
}

state或者address中包含mill,并且在查询过程中,会对于查询条件进行分词。

查询结果:

{
  "took" : 28,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4,
      "relation" : "eq"
    },
    "max_score" : 5.4032025,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "136",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "345",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "472",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 472,
          "balance" : 25571,
          "firstname" : "Lee",
          "lastname" : "Long",
          "age" : 32,
          "gender" : "F",
          "address" : "288 Mill Street",
          "employer" : "Comverges",
          "email" : "leelong@comverges.com",
          "city" : "Movico",
          "state" : "MT"
        }
      }
    ]
  }
}
(6)bool用来做复合查询


复合语句可以合并,任何其他查询语句,包括符合语句。这也就意味着,复合语句之间

可以互相嵌套,可以表达非常复杂的逻辑。


must:必须达到must所列举的所有条件


GET bank/_search
{
   "query":{
        "bool":{
             "must":[
              {"match":{"address":"mill"}},
              {"match":{"gender":"M"}}
             ]
         }
    }
}


must_not,必须不匹配must_not所列举的所有条件。

should,应该满足should所列举的条件。

实例:查询gender=m,并且address=mill的数据

GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "gender": "M"
          }
        },
        {
          "match": {
            "address": "mill"
          }
        }
      ]
    }
  }
}

查询结果:


{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 6.0824604,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "136",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "345",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      }
    ]
  }
}


must_not:必须不是指定的情况

实例:查询gender=m,并且address=mill的数据,但是age不等于38的


GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "gender": "M"
          }
        },
        {
          "match": {
            "address": "mill"
          }
        }
      ],
      "must_not": [
        {
          "match": {
            "age": "38"
          }
        }
      ]
    }
  }


查询结果:

{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 6.0824604,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      }
    ]
  }
}

should:应该达到should列举的条件,如果到达会增加相关文档的评分,并不会改变查询的结果。如果query中只有should且只有一种匹配规则,那么should的条件就会被作为默认匹配条件二区改变查询结果。


实例:匹配lastName应该等于Wallace的数据


GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "gender": "M"
          }
        },
        {
          "match": {
            "address": "mill"
          }
        }
      ],
      "must_not": [
        {
          "match": {
            "age": "18"
          }
        }
      ],
      "should": [
        {
          "match": {
            "lastname": "Wallace"
          }
        }
      ]
    }
  }
}

查询结果:

{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 12.585751,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 12.585751,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "136",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 136,
          "balance" : 45801,
          "firstname" : "Winnie",
          "lastname" : "Holland",
          "age" : 38,
          "gender" : "M",
          "address" : "198 Mill Lane",
          "employer" : "Neteria",
          "email" : "winnieholland@neteria.com",
          "city" : "Urie",
          "state" : "IL"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "345",
        "_score" : 6.0824604,
        "_source" : {
          "account_number" : 345,
          "balance" : 9812,
          "firstname" : "Parker",
          "lastname" : "Hines",
          "age" : 38,
          "gender" : "M",
          "address" : "715 Mill Avenue",
          "employer" : "Baluba",
          "email" : "parkerhines@baluba.com",
          "city" : "Blackgum",
          "state" : "KY"
        }
      }
    ]
  }
}

能够看到相关度越高,得分也越高。


(7)Filter【结果过滤】


并不是所有的查询都需要产生分数,特别是哪些仅用于filtering过滤的文档。为了不计算分数,elasticsearch会自动检查场景并且优化查询的执行。


GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address": "mill"
          }
        }
      ],
      "filter": {
        "range": {
          "balance": {
            "gte": "10000",
            "lte": "20000"
          }
        }
      }
    }
  }
}

这里先是查询所有匹配address=mill的文档,然后再根据10000<=balance<=20000进行过滤查询结果


查询结果:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 5.4032025,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "970",
        "_score" : 5.4032025,
        "_source" : {
          "account_number" : 970,
          "balance" : 19648,
          "firstname" : "Forbes",
          "lastname" : "Wallace",
          "age" : 28,
          "gender" : "M",
          "address" : "990 Mill Road",
          "employer" : "Pheast",
          "email" : "forbeswallace@pheast.com",
          "city" : "Lopezo",
          "state" : "AK"
        }
      }
    ]
  }
}

Each must, should, and must_not element in a Boolean query is referred to as a query clause. How well a document meets the criteria in each must or should clause contributes to the document’s relevance score. The higher the score, the better the document matches your search criteria. By default, Elasticsearch returns documents ranked by these relevance scores.


在boolean查询中,must, should 和must_not 元素都被称为查询子句 。 文档是否符合每个“must”或“should”子句中的标准,决定了文档的“相关性得分”。 得分越高,文档越符合您的搜索条件。 默认情况下,Elasticsearch返回根据这些相关性得分排序的文档。


The criteria in a must_not clause is treated as a filter. It affects whether or not the document is included in the results, but does not contribute to how documents are scored. You can also explicitly specify arbitrary filters to include or exclude documents based on structured data.


“must_not”子句中的条件被视为“过滤器”。 它影响文档是否包含在结果中, 但不影响文档的评分方式。 还可以显式地指定任意过滤器来包含或排除基于结构化数据的文档。


filter在使用过程中,并不会计算相关性得分:

GET bank/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address": "mill"
          }
        }
      ],
      "filter": {
        "range": {
          "balance": {
            "gte": "10000",
            "lte": "20000"
          }
        }
      }
    }
  }
}

查询结果:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 213,
      "relation" : "eq"
    },
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "20",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 20,
          "balance" : 16418,
          "firstname" : "Elinor",
          "lastname" : "Ratliff",
          "age" : 36,
          "gender" : "M",
          "address" : "282 Kings Place",
          "employer" : "Scentric",
          "email" : "elinorratliff@scentric.com",
          "city" : "Ribera",
          "state" : "WA"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "37",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 37,
          "balance" : 18612,
          "firstname" : "Mcgee",
          "lastname" : "Mooney",
          "age" : 39,
          "gender" : "M",
          "address" : "826 Fillmore Place",
          "employer" : "Reversus",
          "email" : "mcgeemooney@reversus.com",
          "city" : "Tooleville",
          "state" : "OK"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "51",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 51,
          "balance" : 14097,
          "firstname" : "Burton",
          "lastname" : "Meyers",
          "age" : 31,
          "gender" : "F",
          "address" : "334 River Street",
          "employer" : "Bezal",
          "email" : "burtonmeyers@bezal.com",
          "city" : "Jacksonburg",
          "state" : "MO"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "56",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 56,
          "balance" : 14992,
          "firstname" : "Josie",
          "lastname" : "Nelson",
          "age" : 32,
          "gender" : "M",
          "address" : "857 Tabor Court",
          "employer" : "Emtrac",
          "email" : "josienelson@emtrac.com",
          "city" : "Sunnyside",
          "state" : "UT"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "121",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 121,
          "balance" : 19594,
          "firstname" : "Acevedo",
          "lastname" : "Dorsey",
          "age" : 32,
          "gender" : "M",
          "address" : "479 Nova Court",
          "employer" : "Netropic",
          "email" : "acevedodorsey@netropic.com",
          "city" : "Islandia",
          "state" : "CT"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "176",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 176,
          "balance" : 18607,
          "firstname" : "Kemp",
          "lastname" : "Walters",
          "age" : 28,
          "gender" : "F",
          "address" : "906 Howard Avenue",
          "employer" : "Eyewax",
          "email" : "kempwalters@eyewax.com",
          "city" : "Why",
          "state" : "KY"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "183",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 183,
          "balance" : 14223,
          "firstname" : "Hudson",
          "lastname" : "English",
          "age" : 26,
          "gender" : "F",
          "address" : "823 Herkimer Place",
          "employer" : "Xinware",
          "email" : "hudsonenglish@xinware.com",
          "city" : "Robbins",
          "state" : "ND"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "222",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 222,
          "balance" : 14764,
          "firstname" : "Rachelle",
          "lastname" : "Rice",
          "age" : 36,
          "gender" : "M",
          "address" : "333 Narrows Avenue",
          "employer" : "Enaut",
          "email" : "rachellerice@enaut.com",
          "city" : "Wright",
          "state" : "AZ"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "227",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 227,
          "balance" : 19780,
          "firstname" : "Coleman",
          "lastname" : "Berg",
          "age" : 22,
          "gender" : "M",
          "address" : "776 Little Street",
          "employer" : "Exoteric",
          "email" : "colemanberg@exoteric.com",
          "city" : "Eagleville",
          "state" : "WV"
        }
      },
      {
        "_index" : "bank",
        "_type" : "account",
        "_id" : "272",
        "_score" : 0.0,
        "_source" : {
          "account_number" : 272,
          "balance" : 19253,
          "firstname" : "Lilly",
          "lastname" : "Morgan",
          "age" : 25,
          "gender" : "F",
          "address" : "689 Fleet Street",
          "employer" : "Biolive",
          "email" : "lillymorgan@biolive.com",
          "city" : "Sunbury",
          "state" : "OH"
        }
      }
    ]
  }
}


能看到所有文档的 “_score” : 0.0。


(8)term


和match一样。匹配某个属性的值。全文检索字段用match,其他非text字段匹配用term。

Avoid using the term query for text fields.


避免对文本字段使用“term”查询


By default, Elasticsearch changes the values of text fields as part of analysis. This can make finding exact matches for text field values difficult.


默认情况下,Elasticsearch作为analysis的一部分更改’ text '字段的值。这使得为“text”字段值寻找精确匹配变得困难。


To search text field values, use the match.


要搜索“text”字段值,请使用匹配。


https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl-term-query.html


使用term匹配查询


GET bank/_search
{
  "query": {
    "term": {
      "address": "mill Road"
    }
  }
}

查询结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  }
}

一条也没有匹配到

而更换为match匹配时,能够匹配到32个文档

也就是说,全文检索字段用match,其他非text字段匹配用term


(9)Aggregation(执行聚合)

聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于SQL Group by和SQL聚合函数。在elasticsearch中,执行搜索返回this(命中结果),并且同时返回聚合结果,把以响应中的所有hits(命中结果)分隔开的能力。这是非常强大且有效的,你可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的API啦避免网络往返。


“size”:0


size:0不显示搜索数据

aggs:执行聚合。聚合语法如下:

"aggs":{
    "aggs_name这次聚合的名字,方便展示在结果集中":{
        "AGG_TYPE聚合的类型(avg,term,terms)":{}
     }
},

搜索address中包含mill的所有人的年龄分布以及平均年龄,但不显示这些人的详情

GET bank/_search
{
  "query": {
    "match": {
      "address": "Mill"
    }
  },
  "aggs": {
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 10
      }
    },
    "ageAvg": {
      "avg": {
        "field": "age"
      }
    },
    "balanceAvg": {
      "avg": {
        "field": "balance"
      }
    }
  },
  "size": 0
}

查询结果:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "ageAgg" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : 38,
          "doc_count" : 2
        },
        {
          "key" : 28,
          "doc_count" : 1
        },
        {
          "key" : 32,
          "doc_count" : 1
        }
      ]
    },
    "ageAvg" : {
      "value" : 34.0
    },
    "balanceAvg" : {
      "value" : 25208.0
    }
  }
}


复杂:

按照年龄聚合,并且求这些年龄段的这些人的平均薪资


GET bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 100
      },
      "aggs": {
        "ageAvg": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  },
  "size": 0
}

输出结果:

{
  "took" : 49,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1000,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "ageAgg" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : 31,
          "doc_count" : 61,
          "ageAvg" : {
            "value" : 28312.918032786885
          }
        },
        {
          "key" : 39,
          "doc_count" : 60,
          "ageAvg" : {
            "value" : 25269.583333333332
          }
        },
        {
          "key" : 26,
          "doc_count" : 59,
          "ageAvg" : {
            "value" : 23194.813559322032
          }
        },
        {
          "key" : 32,
          "doc_count" : 52,
          "ageAvg" : {
            "value" : 23951.346153846152
          }
        },
        {
          "key" : 35,
          "doc_count" : 52,
          "ageAvg" : {
            "value" : 22136.69230769231
          }
        },
        {
          "key" : 36,
          "doc_count" : 52,
          "ageAvg" : {
            "value" : 22174.71153846154
          }
        },
        {
          "key" : 22,
          "doc_count" : 51,
          "ageAvg" : {
            "value" : 24731.07843137255
          }
        },
        {
          "key" : 28,
          "doc_count" : 51,
          "ageAvg" : {
            "value" : 28273.882352941175
          }
        },
        {
          "key" : 33,
          "doc_count" : 50,
          "ageAvg" : {
            "value" : 25093.94
          }
        },
        {
          "key" : 34,
          "doc_count" : 49,
          "ageAvg" : {
            "value" : 26809.95918367347
          }
        },
        {
          "key" : 30,
          "doc_count" : 47,
          "ageAvg" : {
            "value" : 22841.106382978724
          }
        },
        {
          "key" : 21,
          "doc_count" : 46,
          "ageAvg" : {
            "value" : 26981.434782608696
          }
        },
        {
          "key" : 40,
          "doc_count" : 45,
          "ageAvg" : {
            "value" : 27183.17777777778
          }
        },
        {
          "key" : 20,
          "doc_count" : 44,
          "ageAvg" : {
            "value" : 27741.227272727272
          }
        },
        {
          "key" : 23,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 27314.214285714286
          }
        },
        {
          "key" : 24,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 28519.04761904762
          }
        },
        {
          "key" : 25,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 27445.214285714286
          }
        },
        {
          "key" : 37,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 27022.261904761905
          }
        },
        {
          "key" : 27,
          "doc_count" : 39,
          "ageAvg" : {
            "value" : 21471.871794871793
          }
        },
        {
          "key" : 38,
          "doc_count" : 39,
          "ageAvg" : {
            "value" : 26187.17948717949
          }
        },
        {
          "key" : 29,
          "doc_count" : 35,
          "ageAvg" : {
            "value" : 29483.14285714286
          }
        }
      ]
    }
  }
}

查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资

GET bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "ageAgg": {
      "terms": {
        "field": "age",
        "size": 100
      },
      "aggs": {
        "genderAgg": {
          "terms": {
            "field": "gender.keyword"
          },
          "aggs": {
            "balanceAvg": {
              "avg": {
                "field": "balance"
              }
            }
          }
        },
        "ageBalanceAvg": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  },
  "size": 0
}

输出结果:

{
  "took" : 119,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1000,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "ageAgg" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : 31,
          "doc_count" : 61,
          "genderAgg" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : "M",
                "doc_count" : 35,
                "balanceAvg" : {
                  "value" : 29565.628571428573
                }
              },
              {
                "key" : "F",
                "doc_count" : 26,
                "balanceAvg" : {
                  "value" : 26626.576923076922
                }
              }
            ]
          },
          "ageBalanceAvg" : {
            "value" : 28312.918032786885
          }
        }
      ]
        .......//省略其他
    }
  }
}


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
目录
相关文章
|
9月前
|
弹性计算 机器人 应用服务中间件
一键部署开源Qwen3并集成到钉钉、企业微信
Qwen3系列模型现已正式发布并开源,包含8款“混合推理模型”,其中涵盖两款MoE模型(Qwen3-235B-A22B与Qwen3-30B-A3B)及六个Dense模型。阿里云计算巢已支持Qwen3-235B-A22B和Qwen3-32B的私有化部署,用户可通过计算巢轻松完成部署,并借助AppFlow集成至钉钉机器人或企业微信。文档详细介绍了从模型部署、创建应用到配置机器人的全流程,帮助用户快速实现智能助手的接入与使用。
848 19
一键部署开源Qwen3并集成到钉钉、企业微信
|
7月前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
823 1
|
8月前
|
JSON 缓存 并行计算
NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署
阿里巴巴近期开源了通义千问Qwen3大语言模型(LLM),包含两款混合专家模型(MoE)235B-A22B与30B-A3B,以及六款稠密模型(Dense)从0.6B到32B不等。开发者可基于NVIDIA GPU使用TensorRT-LLM、Ollama、SGLang、vLLM等框架高效部署Qwen3系列模型,实现快速词元生成和生产级应用开发。
|
7月前
|
存储 Kubernetes 监控
Docker与Kubernetes集成挑战及方案
面对这些挑战,并不存在一键解决方案。如同搭建灌溉系统需要考虑多种因素,集成Docker与Kubernetes也需要深思熟虑的规划、相当的技术知识和不断的调试。只有这样,才能建立起一个稳定、健康、高效的Docker-Kubernetes生态,让你的应用像花园中的植物一样繁荣生长。
344 63
|
11月前
|
人工智能 Kubernetes jenkins
容器化AI模型的持续集成与持续交付(CI/CD):自动化模型更新与部署
在前几篇文章中,我们探讨了容器化AI模型的部署、监控、弹性伸缩及安全防护。为加速模型迭代以适应新数据和业务需求,需实现容器化AI模型的持续集成与持续交付(CI/CD)。CI/CD通过自动化构建、测试和部署流程,提高模型更新速度和质量,降低部署风险,增强团队协作。使用Jenkins和Kubernetes可构建高效CI/CD流水线,自动化模型开发和部署,确保环境一致性并提升整体效率。
|
6月前
|
物联网 Linux 开发者
快速部署自己私有MQTT-Broker-下载安装到运行不到一分钟,快速简单且易于集成到自己项目中
本文给物联网开发的朋友推荐的是GMQT,让物联网开发者快速拥有合适自己的MQTT-Broker,本文从下载程序到安装部署手把手教大家安装用上私有化MQTT服务器。
1724 5
|
8月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
586 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
11月前
|
弹性计算 人工智能 应用服务中间件
一键部署开源DeepSeek并集成到企业微信
DeepSeek近期发布了两款先进AI模型V3和R1,分别适用于通用应用和推理任务。由于官方API流量过大,建议通过阿里云的计算巢进行私有化部署,以确保稳定使用。用户无需编写代码即可完成部署,并可通过AppFlow轻松集成到钉钉、企业微信等渠道。具体步骤包括选择适合的机器资源、配置安全组、创建企业微信应用及连接流,最后完成API接收消息配置和测试应用。整个过程简单快捷,帮助用户快速搭建专属AI服务。
2019 7
一键部署开源DeepSeek并集成到企业微信
|
11月前
|
人工智能 自然语言处理 机器人
一键部署开源DeepSeek并集成到钉钉
DeepSeek发布了两款先进AI模型V3和R1,分别适用于对话AI、内容生成及推理任务。由于官方API流量限制,阿里云推出了私有化部署方案,无需编写代码即可完成部署,并通过计算巢AppFlow集成到钉钉等渠道。用户可独享资源,避免服务不可用问题。部署步骤包括选择机器资源、配置安全组、创建应用与连接流,最终发布应用版本,实现稳定高效的AI服务。
904 4
一键部署开源DeepSeek并集成到钉钉
|
10月前
|
安全 持续交付 云计算
课时5:阿里云容器服务:最原生的集成Docker和云服务
阿里云容器服务以服务化形式构建容器基础设施,大幅提升开发效率,简化应用部署流程。通过Docker容器和DevOps工具(如Jenkins),实现自动化部署与迭代,优化企业内部复杂部署问题。该服务支持GPU调度、混合云架构无缝迁移,并与阿里云产品体系无缝集成,提供安全防护、网络负载均衡等多重功能支持。凭借微服务架构,帮助企业突破业务瓶颈,提高资源利用率,轻松应对海量流量。
367 0
课时5:阿里云容器服务:最原生的集成Docker和云服务