浅述Java虚拟机(HotSpot)的内存回收细节(下)

简介: 之前介绍了如何进行 JVM 内存自动回收以及常见的垃圾收集算法。现在Java应用越做越庞大,光是方法区的大小就常有数百上千兆, 里面的类、 常量等更是恒河沙数。因此,Java虚拟机实现这些算法时,必须对算法的执行效率有严格的考量, 才能保证虚拟机高效运行。


在JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。

并发的可达性分析

当前主流编程语言的垃圾收集器基本上都是依靠可达性分析算法来判定对象是否存活的,可达性分析算法理论上要求全过程都基于一个能保障一致性的快照中才能够进行分析,这意味着必须全程冻结用户线程的运行。

在根节点枚举这个步骤中, 由于GC Roots相比起整个Java堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如OopMap)的加持下,它带来的停顿已经是非常短暂且相对固定(不随堆容量而增长)的了。

可从GC Roots再继续往下遍历对象图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了:堆越大, 存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长。

要知道包含“标记”阶段是所有追踪式垃圾收集算法的共同特征, 如果这个阶段会随着堆变大而等比例增加停顿时间, 其影响就会波及几乎所有的垃圾收集器,同理可知,如果能够削减这部分停顿时间的话, 那收益也将会是系统性的。

三色标记工具

想解决或者降低用户线程的停顿,就要先搞清楚为什么必须在一个能保障一致性的快照上才能进行对象图的遍历?

为了能解释清楚这个问题, 我们引入三色标记(Tri-color Marking)作为工具来辅助推导, 把遍历对象图过程中遇到的对象, 按照“是否访问过”这个条件标记成以下三种颜色:

  • 白色: 表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段, 仍然是白色的对象, 即代表不可达。
  • 黑色: 表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。 黑色的对象代表已经扫描过, 它是安全存活的, 如果有其他对象引用指向了黑色对象, 无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象) 指向某个白色对象
  • 灰色: 表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描

关于可达性分析的扫描过程,把它看作对象图上一股以灰色为波峰的波纹从黑向白推进的过程, 如果用户线程此时是冻结的,只有收集器线程在工作, 那不会有任何问题。

但如果用户线程与收集器是并发工作呢?

用户线程与收集器是并发工作存在的问题

收集器在对象图上标记颜色,同时用户线程在修改引用关系---即修改对象图的结构, 这样可能出现两种后果。

  • 一种是把原本消亡的对象错误标记为存活,这不是好事, 但其实是可以容忍的, 只不过产生了一点逃过本次收集的浮动垃圾而已, 下次收集清理掉就好。
  • 另一种是把原本存活的对象错误标记为已消亡,这就是非常致命的后果了, 程序肯定会因此发生错误。

下面演示了这样的致命错误具体是如何产生的:

如果用户线程此时是冻结的, 只有收集器线程在工作, 那不会有任何问题。

网络异常,图片无法展示
|

但如果用户线程与收集器是并发工作出现如下两种情况,将会导致对象消失。

网络异常,图片无法展示
|

Wilson于1994年在理论上证明了, 当且仅当以下两个条件同时满足时, 会产生“对象消失”的问题, 即原本应该是黑色的对象被误标为白色:

  • 赋值器插入了一条或多条从黑色对象到白色对象的新引用;
  • 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。

如何保证内存回收正确性?

我们要解决并发扫描时的对象消失问题, 只需破坏上面这两个条件的任意一个即可。 由此分别产生了两种解决方案: 增量更新(Incremental Update) 和原始快照(Snapshot At The Beginning,SATB) 。

  • 增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根, 重新扫描一次。 这可以简化理解为, 黑色对象一旦新插入了指向白色对象的引用之后, 它就变回灰色对象了。
  • 原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时, 就将这个要删除的引用记录下来, 在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否, 都会按照刚刚开始扫描那一刻的对象图快照来进行搜索

以上无论是对引用关系记录的插入还是删除, 虚拟机的记录操作都是通过写屏障实现的。

在HotSpot虚拟机中, 增量更新和原始快照这两种解决方案都有实际应用, 譬如, CMS是基于增量更新来做并发标记的, G1、 Shenandoah则是用原始快照来实现。

总结


本文简要概述了HotSpot虚拟机的内存回收一些细节。首先,谈到了当前主流的JVM都是采用可达性分析算法通过根节点枚举来找到已经死去的对象,发起内存回收。同时,也存在如下问题:

  • 现在Java应用越做越庞大,光是方法区的大小就常有数百上千兆
  • 所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的
  • 从GC Roots再继续往下遍历对象图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了:堆越大,存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长

因此,采用优化GC Roots的查找并行可达性分析这两种方式来减少停顿时间,加速内存的回收。

第一,通过采用安全点和安全区域的方式来优化GC Roots的查找。通过记忆集与卡表来解决跨代引用的问题。同时,提到了通过写屏障来维护卡表的元素。同时,还提到了写屏障存在的一些问题:写屏障会带来额外开销以及伪共享问题。

第二,通过用户线程与收集器是并发工作,从而到达并行可达性分析。通过三色标记工具来理解遍历对象图的过程。同时提到了用户线程与收集器是并发工作将会导致对象消失的问题,还提到了通过增量更新原始快照这两种方案来解决该问题。

相关文章
|
23天前
|
算法 安全 Java
Java内存管理:深入理解垃圾收集器
在Java的世界里,内存管理是一块基石,它支撑着应用程序的稳定运行。本文将带你走进Java的垃圾收集器(GC),探索它是如何默默守护着我们的内存安全。我们将从垃圾收集的基本概念出发,逐步深入到不同垃圾收集器的工作机制,并通过实例分析它们在实际应用中的表现。文章不仅旨在提升你对Java内存管理的认识,更希望你能通过这些知识优化你的代码,让程序运行更加高效。
36 3
|
29天前
|
Kubernetes Cloud Native Java
云原生之旅:从容器到微服务的演进之路Java 内存管理:垃圾收集器与性能调优
【8月更文挑战第30天】在数字化时代的浪潮中,企业如何乘风破浪?云原生技术提供了一个强有力的桨。本文将带你从容器技术的基石出发,探索微服务架构的奥秘,最终实现在云端自由翱翔的梦想。我们将一起见证代码如何转化为业务的翅膀,让你的应用在云海中高飞。
|
9天前
|
监控 算法 Java
Java中的内存管理:理解Garbage Collection机制
本文将深入探讨Java编程语言中的内存管理,特别是垃圾回收(Garbage Collection, GC)机制。我们将从基础概念开始,逐步解析垃圾回收的工作原理、不同类型的垃圾回收器以及它们在实际项目中的应用。通过实际案例,读者将能更好地理解Java应用的性能调优技巧及最佳实践。
33 0
|
3天前
|
存储 缓存 Java
java线程内存模型底层实现原理
java线程内存模型底层实现原理
java线程内存模型底层实现原理
|
5天前
|
Java 编译器
深入理解Java内存模型:从基础到高级
本文旨在通过通俗易懂的方式,引导读者深入理解Java内存模型(JMM)的核心概念和工作原理。我们将从简单的基础知识入手,逐步探讨重排序、顺序一致性问题以及volatile关键字的实现机制等高级主题。希望通过这篇文章,你能够对Java内存模型有一个清晰、全面的认识,并在实际编程中有效地避免并发问题。
|
3天前
|
存储 算法 Java
深入理解Java内存管理
本文将通过通俗易懂的语言,详细解析Java的内存管理机制。从JVM的内存结构入手,探讨堆、栈、方法区等区域的具体作用和原理。进一步分析垃圾回收机制及其调优方法,最后讨论内存泄漏的常见场景及防范措施。希望通过这篇文章,帮助读者更好地理解和优化Java应用的内存使用。
|
7天前
|
监控 算法 Java
Java中的内存管理与垃圾回收机制
本文将深入探讨Java编程语言中的内存管理方式,特别是垃圾回收(Garbage Collection, GC)机制。我们将了解Java虚拟机(JVM)如何自动管理内存,包括对象创建、内存分配以及不使用对象的回收过程。同时,我们还将讨论不同的垃圾回收算法及其在不同场景下的应用。
|
6天前
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。
|
13天前
|
监控 算法 Java
Java中的内存管理:理解垃圾回收机制的深度剖析
在Java编程语言中,内存管理是一个核心概念。本文将深入探讨Java的垃圾回收(GC)机制,解析其工作原理、重要性以及优化方法。通过本文,您不仅会了解到基础的GC知识,还将掌握如何在实际开发中高效利用这一机制。
|
30天前
|
存储 NoSQL 算法
Redis内存回收
Redis 基于内存存储,性能卓越,但单节点内存不宜过大,以免影响持久化或主从同步。可通过配置 `maxmemory` 限制最大内存。内存达到上限时,Redis采用两种策略:内存过期策略和内存淘汰策略。过期策略包括惰性删除和周期删除,后者分为 SLOW 和 FAST 模式。内存淘汰策略有八种,如 LRU、LFU 和随机淘汰等,用于在内存不足时释放空间。官方推荐使用 LFU 算法。
Redis内存回收

热门文章

最新文章