全网最快入门———R语言机器学习实战篇6《功效分析》

简介: R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

这节课讲功效分析

项目实操——功效分析

这节课程我们讨论一下,在数据分析的筹备阶段,我们应该选择多少样本,在一个分析中,如果样本数量过小,那么就算pvalue值非常小,非常显著,也是不可信的。


功效分析(power analysis)可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量,反过来,它也可以在给定置信度水平的情况下,计算在某样本量内能检测到给定效应值的概率。

功效分析的理论基础:

第一类错误:弃真,第二类错误:存伪

所以我们根据要检验的显著性水平、功效和效应值来推算所需要的样品数,R中利用pwr包来进行功效分析。

在pwr中包含了多种功效分析的函数,根据不同的假设检验选择不同的函数:


下面介绍线性回归功效分析的案例

F2=R2/1-R2,即模型解释度(模型方差平方和ssr)与平均数解释度(误差平方和sse)之比,F2效应值越大,样本越小;

V=n-u-1为误差自由度,与样本数和自变量个数相关,误差自由度越搞,说明样本越多,房差越大,F2效应值越小,即解释度越小。

U为自变量个数,与误差自由度正相关,即个数越多,所需的样本越多

Power功效,一般小于0.95,但差距不大,排除假阴性的水平之,power越大,v就越大

pwr.f2.test(u=3,sig.level=0.05,power=0.9,f2=0.0769)

结果表明,v=184.2426,也就是说假定显著性水平为0.05,在90%置信度的情况下,至少需要185个受试者才可以。


下面介绍方差分析功效分析的案例

假设现在两组样品做单因素方差分析,要达到0.9的功效,效应值为0.25,并选择0.05的显著性水平,那么每组需要多少样品量呢?可以使用pwr.anova.test()函数进行分析:

其中选项K是组的个数,n是各组的样本大小也就是我们要求的样本量,f是效应值,sig.level还是显著性水平,power为功效水平:

pwr.anova.test(k=2,f=0.25,sig.level=0.05,power=0.9)

最终求得n=85.03,所以每一组中至少要有86个样本

相关文章
|
3月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
257 46
|
6月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
6月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
369 3
|
6月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
200 2
|
7月前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
601 2
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
499 3
|
10月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
465 3
|
10月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
354 0