全网最快入门———R语言机器学习实战篇1

简介: R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

下面进入实战(方法学完得运用吧)

项目实操——数据分析实战

通过实际案例进行数据分析,了解数据分析的实质

项目实操——线性回归(一)

回归

通常指用一个或多个预测变量,也成自变量或者解释变量,来预测响应变量,也称因变量、标效变量或者 结果变量的方法

回归分析主要用于分析自变量对因变量的影响

重点是:如何建立模型、抽象出数学公式、哪些因素与模型有关、需要利用多少样品、模型的准确率有多高、在实际运用中还是否有效?

最简单的线性回归:普通最小二乘回归法(OLS)

我们可以使用lm()函数来进行线性回归分析,lm是linear model,线性回归模型的简称

这个函数的格式是:

lm(formula, data, subset, weights, na.action, method="qr",
model=TRUE, x=FALSE, y=FALSE, qr=TRUE, singular.ok=TRUE, contrasts=NULL, offset, ...)

formula:是要进行拟合的模型形式,写成一个公式,例如,y ~ ax+b

data:是要使用的数据集,是数据框的格式

一般在回归分析中,都喜欢用fit这个变量名来定义结果,寻找回归模型的过程被称为拟合

如果后面data参数中指定了数据集,那么前面公式中的变量就可以直接写变量名字(注意,因变量在波浪线左边,自变量在右边)

fit<-lm(weight~height,data=women)

回归结果,可以使用summary()函数查看详细的分析结果:

summary(fit)

结果

首先是call这一列,是列出使用的回归的公式。


然后是residuals,表示残差,残差是真实值和预测值之间的差,例如数据第一行,真实的值是58,将58代入预测公式,得出的预测值y,y与58之间的差值就是残差,残差给出了四个值,最小值、最大值、中位值、四分之一的值、四分之三的值,这四个值越小,说明预测模型越精确。


Coefficients:系数项,intercept:截距项(当x等于0时,与y轴的相交点)


Estimate是项系数的值,pr就是pvalue,是假设x与y不相关时候的概率,这个值也是小于0.05比较好,residual standard error残差标准误,表示残差的标准误差,这个也是越小越好。


Multiple R-squared:  0.991, Adjusted R-squared:  0.9903

这两个值称为R方判定系数,是衡量模型拟合质量的指标,它是表示回归模型所能解释的响应变量的方差比例,比如此处,就代表这个模型可以解释99.1%的数据,只有0.9%的数据不符合这个模型,取值在0-1之间,值越大于好。

最后是F-statistic(F统计量),这个值说明模型是否显著,也是用pvalue来衡量,也是值越小越好

得出回归模型是:

Weight=3.45*height-87.52

是一个一元一次方程

在线性回归的结果中,一般先看F统计量,如果F统计量不显著(pvalue不小于0.05),那么这个模型就没有价值了,需要重新进行拟合,如果小于0.05,再看R方差,模型能解释多少变量。

相关文章
|
22天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
57 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
46 2
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
38 1
|
3月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
131 3
|
3月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
69 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
71 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
41 0
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
259 14
|
8月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)