JUC系列(八)Java内存模型 volatile关键字与单例模式实践

简介: JMM里有对于线程交换资源的一些约定 理解可以更好的参透JUC的内容Volatile可以保证可见性和阻止操作系统的指令重排理解多个不同的单例模式的实现方法
📣 📣 📣 📢📢📢
☀️☀️你好啊!小伙伴,我是小冷。是一个兴趣驱动自学练习两年半的的Java工程师。
📒 一位十分喜欢将知识分享出来的Java博主⭐️⭐️⭐️,擅长使用Java技术开发web项目和工具
📒 文章内容丰富:覆盖大部分java必学技术栈,前端,计算机基础,容器等方面的文章
📒 如果你也对Java感兴趣,关注小冷吧,一起探索Java技术的生态与进步,一起讨论Java技术的使用与学习
✏️高质量技术专栏专栏链接: 微服务netty单点登录SSMSpringCloudAlibaba
😝公众号😝想全栈的小冷,分享一些技术上的文章,以及解决问题的经验
当前专栏JUC系列

JMM

谈谈队 Volatile的理解

Volatile 是 java 虚拟机的轻量级同步机制

  1. 保证可见性
  2. 不保证原子性
  3. 禁止指令重排

什么是Jmm

JMM就是Java内存模型(java memory model) Java内存模型规定所有的变量都存储在主内存中,包括实例变量,静态变量,但是不包括局部变量和方法参数。每个线程都有自己的工作内存,线程的工作内存保存了该线程用到的变量和主内存的副本拷贝,线程对变量的操作都在工作内存中进行线程不能直接读写主内存中的变量

jmm的一些同步约定

  1. 线程解锁前 必须把共享变量 立刻刷新回主缓存
  2. 线程加锁 前,必须读取主内存中的最新值到工作中
  3. 加锁和解锁必须是同一把锁

线程 : 工作内存和 主内存

Jmm中的八种操作:

image-20220304163433104

  • lock(锁定),作用于主内存中的变量,把变量标识为线程独占的状态。
  • read(读取),作用于主内存的变量,把变量的值从主内存传输到线程的工作内存中,以便下一步的load操作使用。
  • load(加载),作用于工作内存的变量,把read操作主存的变量放入到工作内存的变量副本中。
  • use(使用),作用于工作内存的变量,把工作内存中的变量传输到执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
  • assign(赋值),作用于工作内存的变量,它把一个从执行引擎中接受到的值赋值给工作内存的变量副本中,每当虚拟机遇到一个给变量赋值的字节码指令时将会执行这个操作。
  • store(存储),作用于工作内存的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用。
  • write(写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
  • unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。

JMM对8种内存交互操作制定的规则:

  • 不允许read、load、store、write操作之一单独出现,也就是read操作后必须load,store操作后必须write。
  • 不允许线程丢弃他最近的assign操作,即工作内存中的变量数据改变了之后,必须告知主存。
  • 不允许线程将没有assign的数据从工作内存同步到主内存。
  • 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是对变量实施use、store操作之前,必须经过load和assign操作。
  • 一个变量同一时间只能有一个线程对其进行lock操作。多次lock之后,必须执行相同次数unlock才可以解锁。
  • 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值。在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值。
  • 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量。
  • 一个线程对一个变量进行unlock操作之前,必须先把此变量同步回主内存。

Volatile

验证 这个关键字的特性

  1. 保证可见性
  2. 不保证原子性
  3. 禁止指令重排
1 可见性
    //volatile 之后 就会循环停止了,验证了特性 1 可见性
    private volatile static int num = 0;

    public static void main(String[] args) {
        //此时循环 没有结束 为什么? 因为线程队主内存的变化并不知道
        new Thread(() -> {
            while (num == 0) {

            }
        }).start();
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        num = 1;
    }
2 不保证原子性

使用 synchronized 关键字 保证原子性 结果为 20000

   private static int num = 0;

    public synchronized static void add() {
        num++;
    }

    public static void main(String[] args) {
        for (int i = 1; i <= 20; i++) {
            new Thread(() -> {
                for (int j = 0; j < 1000; j++) {
                    add();
                }
            }).start();
        }
        while (Thread.activeCount() > 2) {
            Thread.yield();
        }
        System.out.println(Thread.currentThread().getName() + num);
    }

使用 Volatile 不保证原子性 17824 每次出来的都不一样,可能是两万 概率不大

    private volatile static int num = 0;

    public static void add() {
        num++;
    }

    public static void main(String[] args) {
        for (int i = 1; i <= 20; i++) {
            new Thread(() -> {
                for (int j = 0; j < 1000; j++) {
                    add();
                }
            }).start();
        }
        while (Thread.activeCount() > 2) {
            Thread.yield();
        }
        System.out.println(Thread.currentThread().getName() + num);
    }
问题 如果不上锁 也不用 关键字 ,我们怎么保证原子性

image-20220304165005009

使用JUC 包中的 原子类 来解决 原子性问题

比如 int : 替换成 原子类 AtomicInteger

 private volatile static AtomicInteger num = new AtomicInteger(0);

    public static void add() {
        //num++;
        // incr 自增
        num.getAndIncrement();
    }

    public static void main(String[] args) {
        for (int i = 1; i <= 20; i++) {
            new Thread(() -> {
                for (int j = 0; j < 1000; j++) {
                    add();
                }
            }).start();
        }
        while (Thread.activeCount() > 2) {
            Thread.yield();
        }
        System.out.println(Thread.currentThread().getName() + num);
    }

保证了原子操作 输出20000

image-20220304165350036

这些原子类的底层直接和操作系统挂钩,在内存中修改值,Unsafe 类是一个中很特殊的存在

指令重排

什么是 指令重排: 我们写的程序 计算机不一定会按照我们写的顺序来执行

源代码 -> 编译器优化重排 -> 指令并行可能会重排->内存系统也会重排-->执行

==处理器再进行指令重排的时候 考虑数据之间的依赖性==

int x = 1;// 1
int y = 2;// 2
x = x + 5;// 3
y = x * x;// 4

我们期待的是 1234, 可能执行的时候变成了 2134 1324
但是不可能是 4123

可能 造成影响最后的执行结果 a b x y 默认值都是 0

image-20220304170008300

正常的结果 : x=0;y=0; 可能由于指令重排

image-20220304170120677

指令重排 导致的奇怪结构 = x=2 y=1

volatile 可以避免指令重排

内存屏障 CPU 指令 作用:

  1. 保证特定操作的执行顺序
  2. 可以保证某些变量的内存可见性

image-20220304170643130

单例模式

饿汉式
public class Hungryemo {
    private Hungryemo() {
    }

    private final static Hungryemo HUNGRYEMO = new Hungryemo();

    public static Hungryemo getIstance() {
        return HUNGRYEMO;
    }
}
DCL懒汉式
package single;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

/**
 * @projectName: JUC
 * @package: single
 * @className: LazyMan
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/3/4 17:09
 * @version: 1.0
 */
public class LazyMan {
    private static boolean flag = true;

    private LazyMan() {
        synchronized (LazyMan.class) {
            if (flag == false) {
                flag = true;
            } else {
                throw new RuntimeException("不要试图用反射破坏单例模式");
            }
            if (lazyMan != null) {
                throw new RuntimeException("不要试图用反射破坏单例模式");
            }
        }
    }

    //必须 加上 volatile 避免 指令重排
    private volatile static LazyMan lazyMan;

    // 双重检测锁模式 的懒汉式单例 DCL懒汉式
    public static LazyMan getInstance() {
        if (lazyMan == null) {
            synchronized (LazyMan.class) {
                if (lazyMan == null) {
                    lazyMan = new LazyMan();
                    //    会有问题 不是一个原子性操作
                    /* 1. 分配内存空间
                     * 2 。 执行构造对象 初始化对象
                     * 3. 把这个对象指向空间
                     *
                     * 比如 我们期望执行的是 123
                     * 但是 指令重排 执行是 132
                     * a 线程可能没有问题,
                     * b 就会以为已经完成构造,指向就是null 可能会空指针
                     * */
                }
            }
        }
        return lazyMan;
    }

    //但是会有并发问题
    public static void main(String[] args) throws NoSuchFieldException, NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
        Constructor<EnumSngle> field = EnumSngle.class.getDeclaredConstructor(String.class, int.class);
        field.setAccessible(true);
        //LazyMan lazyMan = field.newInstance();
        //LazyMan lazyMan1 = field.newInstance();
        EnumSngle lazyMan = field.newInstance();
        EnumSngle lazyMan1 = field.newInstance();

        System.out.println(lazyMan);
        System.out.println(lazyMan1);
    }
}
静态内部类
public class Holder {
    private Holder() {
    }

    public static Holder getInstance() {
        return innerClass.holder;
    }

    public static class innerClass {
        private final static Holder holder = new Holder();
    }


}
枚举
//enum 是什么? 本身也是一个 Class 类
public enum EnumSngle {
    INSTANCE;

    private EnumSngle() {
    }

    public EnumSngle getInstance() {
        return INSTANCE;
    }
}
class test{
        //但是会有并发问题
    public static void main(String[] args) throws NoSuchFieldException, NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
        Constructor<EnumSngle> field = EnumSngle.class.getDeclaredConstructor(String.class, int.class);
        field.setAccessible(true);
        //LazyMan lazyMan = field.newInstance();
        //LazyMan lazyMan1 = field.newInstance();
        EnumSngle lazyMan = field.newInstance();
        EnumSngle lazyMan1 = field.newInstance();

        System.out.println(lazyMan);
        System.out.println(lazyMan1);
    }
}
相关文章
|
15天前
|
设计模式 安全 Java
Java编程中的单例模式:理解与实践
【10月更文挑战第31天】在Java的世界里,单例模式是一种优雅的解决方案,它确保一个类只有一个实例,并提供一个全局访问点。本文将深入探讨单例模式的实现方式、使用场景及其优缺点,同时提供代码示例以加深理解。无论你是Java新手还是有经验的开发者,掌握单例模式都将是你技能库中的宝贵财富。
21 2
|
12天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
35 6
|
11天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
8天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
12天前
|
SQL Java 数据库连接
从理论到实践:Hibernate与JPA在Java项目中的实际应用
本文介绍了Java持久层框架Hibernate和JPA的基本概念及其在具体项目中的应用。通过一个在线书店系统的实例,展示了如何使用@Entity注解定义实体类、通过Spring Data JPA定义仓库接口、在服务层调用方法进行数据库操作,以及使用JPQL编写自定义查询和管理事务。这些技术不仅简化了数据库操作,还显著提升了开发效率。
27 3
|
11天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
12天前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践
|
15天前
|
设计模式 安全 Java
Java编程中的单例模式深入解析
【10月更文挑战第31天】在编程世界中,设计模式就像是建筑中的蓝图,它们定义了解决常见问题的最佳实践。本文将通过浅显易懂的语言带你深入了解Java中广泛应用的单例模式,并展示如何实现它。
|
3月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
378 0
|
25天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
55 1
下一篇
无影云桌面