【云原生&微服务八】Ribbon负载均衡策略之WeightedResponseTimeRule源码剖析(响应时间加权)

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 【云原生&微服务八】Ribbon负载均衡策略之WeightedResponseTimeRule源码剖析(响应时间加权)

@[TOC]

一、前言

前置Ribbon相关文章:

  1. 【云原生&微服务一】SpringCloud之Ribbon实现负载均衡详细案例(集成Eureka、Ribbon)
  2. 【云原生&微服务二】SpringCloud之Ribbon自定义负载均衡策略(含Ribbon核心API)
  3. 【云原生&微服务三】SpringCloud之Ribbon是这样实现负载均衡的(源码剖析@LoadBalanced原理)
  4. 【云原生&微服务四】SpringCloud之Ribbon和Erueka集成的细节全在这了(源码剖析)
  5. 【微服务五】Ribbon随机负载均衡算法如何实现的
  6. 【微服务六】Ribbon负载均衡策略之轮询(RoundRobinRule)、重试(RetryRule)
  7. 【微服务七】Ribbon负载均衡策略之BestAvailableRule

我们聊了以下问题:

  1. 为什么给RestTemplate类上加上了@LoadBalanced注解就可以使用Ribbon的负载均衡?
  2. SpringCloud是如何集成Ribbon的?
  3. Ribbon如何作用到RestTemplate上的?
  4. 如何获取到Ribbon的ILoadBalancer?
  5. ZoneAwareLoadBalancer(属于ribbon)如何与eureka整合,通过eureka client获取到对应注册表?
  6. ZoneAwareLoadBalancer如何持续从Eureka中获取最新的注册表信息?
  7. 如何根据负载均衡器ILoadBalancer从Eureka Client获取到的List<Server>中选出一个Server?
  8. Ribbon如何发送网络HTTP请求?
  9. Ribbon如何用IPing机制动态检查服务实例是否存活?
  10. Ribbon负载均衡策略之随机(RandomRule)、轮询(RoundRobinRule)、重试(RetryRule)、选择并发量最小的(BestAvailableRule)实现方式;

本文继续讨论 根据响应时间加权算法(WeightedResponseTimeRule)是如何实现的?

二、WeightedResponseTimeRule

WeightedResponseTimeRule继承自RoundRobinRule,也就是说该策略是对RoundRobinRule的扩展,其增加了 根据实例运行情况来计算权重 并根据权重挑选实例的规则,以达到更优的负载、实例分配效果。

下面我们一点点来看WeightedResponseTimeRule是如何实现根据相应时间计算权重并根据权重挑选实例的?

1、计算权重?

WeightedResponseTimeRule在初始化的时候会初始化父类RoundRobinRule,在RoundRobinRule的有参构造函数中会调用setLoadBalancer(ILoadBalancer)方法,WeightedResponseTimeRule类中重写了setLoadBalancer(ILoadBalancer)方法,在setLoadBalancer(ILoadBalancer)中会调用initialize(ILoadBalancer)对权重进行初始化、并定时更新。
在这里插入图片描述

public static final int DEFAULT_TIMER_INTERVAL = 30 * 1000;

private int serverWeightTaskTimerInterval = DEFAULT_TIMER_INTERVAL;

1)如何更新权重?

WeightedResponseTimeRule通过Timer#schedule()方法启动一个上一个任务结束到下一个任务开始之间间隔30s执行一次的定时任务为每个服务实例计算权重;
在这里插入图片描述
定时任务的主体是DynamicServerWeightTask

// WeightedResponseTimeRule的内部类
class DynamicServerWeightTask extends TimerTask {
    public void run() {
        ServerWeight serverWeight = new ServerWeight();
        try {
            serverWeight.maintainWeights();
        } catch (Exception e) {
            logger.error("Error running DynamicServerWeightTask for {}", name, e);
        }
    }
}

DynamicServerWeightTask的run()方法中会实例化一个ServerWeight对象,并通过其maintainWeights()方法计算权重。

2)如何计算权重?

无论是权重的初始化还是权重的定时更新,都是使用ServerWeight#maintainWeights()方法来计算权重:

// WeightedResponseTimeRule的内部类
class ServerWeight {

    public void maintainWeights() {
        ILoadBalancer lb = getLoadBalancer();
        if (lb == null) {
            return;
        }
        // CAS保证只有一个线程可以进行权重的计算操作
        if (!serverWeightAssignmentInProgress.compareAndSet(false,  true))  {
            return; 
        }
        
        try {
            logger.info("Weight adjusting job started");
            AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;
            LoadBalancerStats stats = nlb.getLoadBalancerStats();
            if (stats == null) {
                return;
            }
            // 所有实例的平均响应时间总和
            double totalResponseTime = 0;
            for (Server server : nlb.getAllServers()) {
                // 汇总每个实例的平均响应时间到totalResponseTime上
                ServerStats ss = stats.getSingleServerStat(server);
                totalResponseTime += ss.getResponseTimeAvg();
            }
            // 计算每个实例的权重:weightSoFar + totalResponseTime - 实例的平均响应时间
            // 实例的平均响应时间越长、权重就越小,就越不容易被选择到
            Double weightSoFar = 0.0;
            
            List<Double> finalWeights = new ArrayList<Double>();
            for (Server server : nlb.getAllServers()) {
                ServerStats ss = stats.getSingleServerStat(server);
                double weight = totalResponseTime - ss.getResponseTimeAvg();
                weightSoFar += weight;
                finalWeights.add(weightSoFar);   
            }
            setWeights(finalWeights);
        } catch (Exception e) {
            logger.error("Error calculating server weights", e);
        } finally {
            // 表示权重计算结束,允许其他线程进行权重计算
            serverWeightAssignmentInProgress.set(false);
        }

    }
}

方法的核心逻辑:

  1. LoadBalancerStats中记录了每个实例的统计信息,累加所有实例的平均响应时间,得到总平均响应时间totalResponseTime
  2. 为负载均衡器中维护的实例列表逐个计算权重(从第一个开始),计算规则为:weightSoFar + totalResponseTime - 实例的平均响应时间
  3. 其中weightSoFar初始化为零,并且每计算好一个权重需要累加到weightSoFar上供下一次计算使用;

3)例证权重的计算

举个例子,假如服务A有四个实例:A、B、C、D,他们的平均响应时间(单位:ms)为:10、50、100、200。

  • 服务A的所有实例的总响应时间(totalResponseTime)为:10 + 50 + 100 + 200 = 360
  • 每个实例的权重计算规则为:总响应时间(totalResponseTime) 减去 实例的平均响应时间 + 累加的权重weightSoFar,具体到每个实例的计算如下:
  1. 实例A:360 - 10 + 0 = 350(weightSoFar = 0)
  2. 实例B:360 - 50 + 350 = 660(weightSoFar = 350)
  3. 实例C:360 - 100 + 660 = 920(weightSoFar = 660)
  4. 实例D:360 - 200 + 920 = 1080(weightSoFar = 920)

这里的权重值表示各实例权重区间的上限,以上面的计算结果为例,它为这4个实例各构建了一个区间:

  1. 每个实例的区间下限是上一个实例的区间上限;
  2. 每个实例的区间上限是我们计算出的并存储于在List<Double>类型的accumulatedWeights变量中的权重值,其中第一个实例的下限默认为零。

所以,根据上面示例的权重计算结果,我们可以得到每个实例的权重区间:

  1. 实例A:[0,350](weightSoFar = 0)
  2. 实例B:(350, 660](weightSoFar = 350)
  3. 实例C:(660, 920](weightSoFar = 660)
  4. 实例D:(920, 1080](weightSoFar = 920)

从这里我们可以确定每个区间的宽度实际就是:总的平均响应时间 - 实例的平均响应时间,所以服务实例的平均响应时间越短、权重区间的宽度就越大,服务实例被选中的概率就越高。

这些区间边界的开闭如何确定?区间在哪里使用?

2、权重的使用

我们知道Ribbon负载均衡算法体现在IRule的choose(Object key)方法中,而choose(Object key)方法中又会调用choose(ILoadBalancer lb, Object key)方法,所以我们只需要看WeightedResponseTimeRule的choose(ILoadBalancer lb, Object key)方法:
在这里插入图片描述

方法的核心流程如下:

  1. 如果服务实例的最大权重值 < 0.001 或者服务的实例个数发生变更,则采用父类RoundRobinRule做轮询负载;
  2. 否则,利用Random函数生成一个随机数randomWeight,然后遍历权重列表,找到第一个权重值大于等于随机数randomWeight的列表索引下标,然后拿当前权重列表的索引值去服务实例列表中获取具体实例。

1)权重区间问题?

正常每个区间都为(x, y],但是第一个实例和最后一个实例不同:

  1. 由于随机数的最小取值可以为0,所以第一个实例的下限是闭区间;
  2. 随机数的最大值取不到最大权重值,所以最后一个实例的上限是开区间;
相关实践学习
小试牛刀,一键部署电商商城
SAE 仅需一键,极速部署一个微服务电商商城,体验 Serverless 带给您的全托管体验,一起来部署吧!
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6月前
|
负载均衡 Java Nacos
Ribbon负载均衡
Ribbon负载均衡
68 1
Ribbon负载均衡
|
4月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
610 11
架构学习:7种负载均衡算法策略
|
4月前
|
负载均衡 IDE Java
SpringBoot整合XXL-JOB【04】- 以GLUE模式运行与执行器负载均衡策略
在本节中,我们将介绍XXL-JOB的GLUE模式和集群模式下的路由策略。GLUE模式允许直接在线上改造方法为定时任务,无需重新部署。通过一个测试方法,展示了如何在调度中心配置并使用GLUE模式执行定时任务。接着,我们探讨了多实例环境下的负载均衡策略,确保任务不会重复执行,并可通过修改路由策略(如轮训)实现任务在多个实例间的均衡分配。最后,总结了GLUE模式和负载均衡策略的应用,帮助读者更深入理解XXL-JOB的使用。
167 9
SpringBoot整合XXL-JOB【04】-  以GLUE模式运行与执行器负载均衡策略
|
6月前
|
负载均衡 算法 Java
除了 Ribbon,Spring Cloud 中还有哪些负载均衡组件?
这些负载均衡组件各有特点,在不同的场景和需求下,可以根据项目的具体情况选择合适的负载均衡组件来实现高效、稳定的服务调用。
430 5
|
5月前
|
负载均衡 Java Nacos
常见的Ribbon/Spring LoadBalancer的负载均衡策略
自SpringCloud 2020版起,Ribbon被弃用,转而使用Spring Cloud LoadBalancer。Ribbon支持轮询、随机、加权响应时间和重试等负载均衡策略;而Spring Cloud LoadBalancer则提供轮询、随机及Nacos负载均衡策略,基于Reactor实现,更高效灵活。
312 0
|
7月前
|
负载均衡 应用服务中间件 nginx
Nginx的6大负载均衡策略及权重轮询手写配置
【10月更文挑战第9天】 Nginx是一款高性能的HTTP服务器和反向代理服务器,它在处理大量并发请求时表现出色。Nginx的负载均衡功能可以将请求分发到多个服务器,提高网站的吞吐量和可靠性。以下是Nginx支持的6大负载均衡策略:
733 7
|
7月前
|
负载均衡 算法 Java
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
尼恩,一位资深架构师,分享了关于负载均衡及其策略的深入解析,特别是基于权重的负载均衡策略。文章不仅介绍了Nginx的五大负载均衡策略,如轮询、加权轮询、IP哈希、最少连接数等,还提供了手写加权轮询算法的Java实现示例。通过这些内容,尼恩帮助读者系统化理解负载均衡技术,提升面试竞争力,实现技术上的“肌肉展示”。此外,他还提供了丰富的技术资料和面试指导,助力求职者在大厂面试中脱颖而出。
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
|
8月前
|
负载均衡 Java 对象存储
负载均衡策略:Spring Cloud与Netflix OSS的最佳实践
负载均衡策略:Spring Cloud与Netflix OSS的最佳实践
118 2
|
8月前
|
负载均衡 Java 开发者
Ribbon框架实现客户端负载均衡的方法与技巧
Ribbon框架为微服务架构中的客户端负载均衡提供了强大的支持。通过简单的配置和集成,开发者可以轻松地在应用中实现服务的发现、选择和负载均衡。适当地使用Ribbon,配合其他Spring Cloud组件,可以有效提升微服务架构的可用性和性能。
107 0
|
6月前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
317 6