【分离式图像分类平台】MobilenetV2、EfficientNetV2和Swin Transformer

简介: 【分离式图像分类平台】MobilenetV2、EfficientNetV2和Swin Transformer

学习前言


       为了保持一贯精简的作风,本文章不对模型进行解读,因为只是单纯的讲明白使用流程,字数已经是非常不少了!  那么有人担心了:既然是一个图片分类平台,那么肯定有多种模型,可是一般来讲,我最终要用的模型只有一种呀,其他的岂不是放在那里浪费空间? 对于这种顾虑,本文章提出了一种新的思想——训练任务与测试任务二分离法,使得工程开发更加简便,打破了这种顾虑。具体情况如何,敬请使用吧!


内置模型先览


       内置了三种模型,他们分别在各自的领域扮演着中流砥柱的角色,博主对分类模型大致做了 一个总结与分类,选择这三个模型是深思熟虑的结果。


1、CNN轻量级模型王者:MobilenetV2


2、CNN重量级模型王者:EfficientNetV2


3、“模型很重,效果很好”的Transformer模型王者:Swin Transformer


           提示:对于Transformer模型暂且仅支持Vision Transformer(由于Swin Transformer的预训练权重下载 有点慢)


平台优势


💖  支持Windows/Linux


💖  一个平台多种场景:可以采用切换模型的方式解决单模型不够全面的问题——不同的实验环境与不同的实验目标下模型变得不适用的困扰。


💖  内置三种模型皆支持迁移学习,且warehouse/pretrained_weights文件夹下自带多个预训练模型,不必自己去网上冲浪下载。


💖  支持冻结训练、 支持DP模式/DDP模式训练、支持单机多卡分布式训练、支持混合精度训练。    


💖  灵活训练自己的模型,可调节参数多达20+。


💖  支持多种学习率下降方式:固定步长下降方式与余弦退火下降方式等。


💖  支持多线程读取数据。


💖  内置大量处理数据集的小工具:/tools文件夹下(期待探索哦!)


💖  训练、预测分离想法:抱着“宁非需要,勿曾新知”的想法,为工程实现仅保留必要之物——预测任务中当且仅需得到训练出的模型


开源代码


      gitee链接:(维护中..,)


      百度网盘:


链接:https://pan.baidu.com/s/16OJMqJSa8PTQW_mowimJzA

提取码:lgy0


完毕!


希望对大家学习深度学习中的图像处理有所帮助,并且能够得到大家的三连支持!


相关文章
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
|
7月前
|
机器学习/深度学习 数据可视化 算法
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
|
5月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
2月前
|
机器学习/深度学习 自然语言处理 并行计算
Transformer模型
【10月更文挑战第3天】
79 0
|
机器学习/深度学习 并行计算 PyTorch
Swin Transformer实战:使用 Swin Transformer实现图像分类
目标检测刷到58.7 AP! 实例分割刷到51.1 Mask AP! 语义分割在ADE20K上刷到53.5 mIoU! 今年,微软亚洲研究院的Swin Transformer又开启了吊打CNN的模式,在速度和精度上都有很大的提高。这篇文章带你实现Swin Transformer图像分类。
9873 0
Swin Transformer实战:使用 Swin Transformer实现图像分类
|
机器学习/深度学习 人工智能 并行计算
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍
|
机器学习/深度学习 编解码 PyTorch
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型(二)
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型(二)
204 0
|
机器学习/深度学习 编解码 自然语言处理
EfficientNet、ShuffleNet、NFNet…你都掌握了吗?一文总结图像分类必备经典模型(三)
EfficientNet、ShuffleNet、NFNet…你都掌握了吗?一文总结图像分类必备经典模型(三)
208 0
EfficientNet、ShuffleNet、NFNet…你都掌握了吗?一文总结图像分类必备经典模型(三)
|
数据挖掘 计算机视觉
Transformer | 详细解读Transformer怎样从零训练并超越ResNet?(二)
Transformer | 详细解读Transformer怎样从零训练并超越ResNet?(二)
177 0
|
机器学习/深度学习 数据可视化 计算机视觉
Transformer | 详细解读Transformer怎样从零训练并超越ResNet?(一)
Transformer | 详细解读Transformer怎样从零训练并超越ResNet?(一)
305 0