大数据基础-日志数据汇总采集

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 日志数据汇总采集

需求

  • 将bigdata02和bigdata03机器实时产生的日志数据汇总到bigdata04中
  • 通过bigdata04将数据输出到HDFS指定目录

这里注意:HDFS目录要按天生产每天一个目录。

分析

图解:

网络异常,图片无法展示
|

这里需要用到3个Agent

  • Agent1负责采集机器bigdata02数据
  • Agent2负责采集机器bigdata03数据
  • Agent3负责汇总机器1和2数据到机器3再统一输出到HDFS
  • Agent1和Agent2因为要实时读取文件中新增数据,所以使用基于文件的source,Exec Source。
  • Channel统一使用基于内存的Channel-Memory Channel
  • 由于需要汇总数据,所以sink端加快传输使用Avro Sink
  • 备注:Avro是一种序列化的手段,经过序列化的数据进行传输的时候效率非常高,Avro Sink发送的数据可以直接被Avro Source接受,无缝衔接

实战

以下定义02为A、03为B、04为C

首先在02机器上配置Flume

网络异常,图片无法展示
|

配置Agent,创建文件 file-to-avro-104.conf

网络异常,图片无法展示
|

在03机器上配置Flume

与02机器一样的操作

网络异常,图片无法展示
|

配置Agent,创建文件file-to-avro-104.conf

网络异常,图片无法展示
|

在04机器上配置文件avro-to-hdfs.conf

这里有个注意的点:

在指定Agent中sink配置的时候注意,我们的需求是需要按天在hdfs中创建目录,并把当天的数据上传到 当天的日期目录中,这也就意味着hdfssink中的path不能写死,需要使用变量,动态获取时间,查看官 方文档可知,在hdfs的目录中需要使用%Y%m%d。

这个时间其实是需要从数据里面抽取,咱们前面 说过数据的基本单位是Event,Event是一个对象,后面我们会详细分析,在这里大家先知道它里面包含 的既有我们采集到的原始的数据,还有一个header属性,这个header属性是一个key-value结构的,我 们现在抽取时间就需要到event的header中抽取,但是默认情况下event的header中是没有日期的,强行 抽取是会报错的,会提示抽取不到,返回空指针异常。

其实官方文档中也说了,可以使用hdfs.useLocalTimeStamp或者时间 拦截器,暂时最简单直接的方式就是使用hdfs.useLocalTimeStamp,这个属 性的值默认为false,需要改为true

网络异常,图片无法展示
|

三台机器中的Flume Agent都配置好了,在开始启动之前需要先在bigdata02和bigdata03中生成测试数 据,为了模拟真实情况,在这里我们就开发一个脚本,定时向文件中写数据。

#!/bin/bash

# 循环向文件中生成数据

while [ "1"="1" ]

do

# 获取当前时间戳

curr_time=`date +%s`

# 获取当前主机名

name=`hostname`

echo${name}_${curr_time} >> /data/log/access.log

# 暂停1秒

sleep1

done

1.首先在bigdata02上创建/data/log目录,然后创建 generateAccessLog.sh 脚本

2.接着在bigdata03上创建/data/log目录,然后创建 generateAccessLog.sh 脚本

3.接下来开始启动相关的服务进程 首先启动bigdata04上的agent服务

这里要注意下启动顺序

首先应该启动的是04机器、如果没有启动04就启动了02和03,会丢失一部分数据

  • 启动04

../bin/flume-ng agent --name a1 --conf /data/soft/apache-flume-1.9.0-bin/conf/ --conf-file avro-to-hdfs.conf -Dflume.root.logger=INFO,console

网络异常,图片无法展示
|

  • 启动03

../bin/flume-ng agent --name a1 --conf /data/soft/apache-flume-1.9.0-bin/conf/ --conf-file file-to-avro-104.conf -Dflume.root.logger=INFO,console

网络异常,图片无法展示
|

初始化测试数据

sh -x generateAccessLog.sh

  • 启动02

../bin/flume-ng agent --name a1 --conf /data/soft/apache-flume-1.9.0-bin/conf/ --conf-file file-to-avro-104.conf -Dflume.root.logger=INFO,console

网络异常,图片无法展示
|

初始化测试数据

sh -x generateAccessLog.sh

验证数据结果

网络异常,图片无法展示
|

网络异常,图片无法展示
|

启动之后稍等一会就可以看到数据了,我们观察数据的变化,会发现hdfs中数据增长的不 是很快,它会每隔一段时间添加一批数据,实时性好像没那么高

注意

这是因为avrosink中有一个配置batch-size,它的默认值是100,也就是每次发送100条数据,如果数据 不够100条,则不发送。 具体这个值设置多少合适,要看你source数据源大致每秒产生多少数据,以及你希望的延迟要达到什么 程度,如果这个值设置太小的话,会造成sink频繁向外面写数据,这样也会影响性能。

实战结束

最终,依次停止bigdata02、bigdata03中的服务,最后停止bigdata04中的服务

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
188 14
|
2月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
647 57
|
1月前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
182 1
|
2月前
|
数据采集 运维 监控
不重启、不重写、不停机:SLS 软删除如何实现真正的“无感数据急救”?
SLS 全新推出的「软删除」功能,以接近索引查询的性能,解决了数据应急删除与脏数据治理的痛点。2 分钟掌握这一数据管理神器。
234 31
|
2月前
|
存储 Kubernetes 监控
Kubernetes日志管理:使用Loki进行日志采集
通过以上步骤,在Kubernetes环境下利用LoKi进行有效率且易于管理地logs采集变成可能。此外,在实施过程中需要注意版本兼容性问题,并跟进社区最新动态以获取功能更新或安全补丁信息。
225 16
|
2月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
140 14
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
3月前
|
存储 缓存 Apache
StarRocks+Paimon 落地阿里日志采集:万亿级实时数据秒级查询
A+流量分析平台是阿里集团统一的全域流量数据分析平台,致力于通过埋点、采集、计算构建流量数据闭环,助力业务提升流量转化。面对万亿级日志数据带来的写入与查询挑战,平台采用Flink+Paimon+StarRocks技术方案,实现高吞吐写入与秒级查询,优化存储成本与扩展性,提升日志分析效率。
478 1
|
2月前
|
机器学习/深度学习 传感器 监控
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
108 1
|
2月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
209 1

热门文章

最新文章

下一篇
oss云网关配置