本节书摘来自异步社区《Linux 设备驱动开发详解(第2版)》一书中的第1章,第1.1节,作者:宋宝华著,更多章节内容可以访问云栖社区“异步社区”公众号查看
1.4 Linux设备驱动
Linux 设备驱动开发详解(第2版)
1.4.1 设备的分类及特点
计算机系统的硬件主要由CPU、存储器和外设组成。随着IC制作工艺的发展,目前,芯片的集成度越来越高,往往在CPU内部就集成了存储器和外设适配器。譬如,相当多的ARM、PowerPC、MIPS等处理器都集成了UART、I2C控制器、USB控制器、SDRAM控制器等,有的处理器还集成了片内RAM和Flash。
驱动针对的对象是存储器和外设(包括CPU内部集成的存储器和外设),而不是针对CPU核。Linux将存储器和外设分为3个基础大类。
字符设备。
块设备。
网络设备。
字符设备指那些必须以串行顺序依次进行访问的设备,如触摸屏、磁带驱动器、鼠标等。块设备可以用任意顺序进行访问,以块为单位进行操作,如硬盘、软驱等。字符设备不经过系统的快速缓冲,而块设备经过系统的快速缓冲。但是,字符设备和块设备并没有明显的界限,如对于Flash设备,符合块设备的特点,但是我们仍然可以把它作为一个字符设备来访问。
字符设备和块设备的驱动设计呈现出很大的差异,但是对于用户而言,他们都使用文件系统的操作接口open()、close()、read()、write()等进行访问。
在Linux系统中,网络设备面向数据包的接收和发送而设计,它并不对应于文件系统的节点。内核与网络设备的通信与内核和字符设备、网络设备的通信方式完全不同。
另外一种设备分类方法中所称的I2C驱动、USB驱动、PCI驱动、LCD驱动等本身可归纳入3个基础大类,但是对于这些复杂的设备,Linux也定义了独特的驱动体系结构。
1.4.2 Linux设备驱动与整个软硬件系统的关系
如图1.5所示,除网络设备外,字符设备与块设备都被映射到Linux文件系统的文件和目录,通过文件系统的系统调用接口open()、write()、read()、close()等即可访问字符设备和块设备。所有的字符设备和块设备都被统一地呈现给用户。块设备比字符设备复杂,在它上面会首先建立一个磁盘/Flash文件系统,如FAT、EXT3、YAFFS2、JFFS2、UBIFS等。FAT、EXT3、YAFFS2、JFFS2、UBIFS定义了文件和目录在存储介质上的组织。
应用程序可以使用Linux的系统调用接口编程,但也可使用C库函数,出于代码可移植性的目的,后者更值得推荐。C库函数本身也通过系统调用接口而实现,如C库函数fopen()、fwrite()、fread()、fclose()分别会调用操作系统的API open()、write()、read()、close()。
1.4.3 Linux设备驱动的重点、难点
Linux设备驱动的学习是一项浩繁的工程,包含如下的重点、难点。
编写Linux设备驱动要求工程师有非常好的硬件基础,懂得SRAM、Flash、SDRAM、磁盘的读写方式,UART、I2C、USB等设备的接口以及轮询、中断、DMA的原理,PCI总线的工作方式以及CPU的内存管理单元(MMU)等。
编写Linux设备驱动要求工程师有非常好的C语言基础,能灵活地运用C语言的结构体、指针、函数指针及内存动态申请和释放等。
编写Linux设备驱动要求工程师有一定的Linux内核基础,虽然并不要求工程师对内核各个部分有深入的研究,但至少要明白驱动与内核的接口。尤其是对于块设备、网络设备、Flash设备、串口设备等复杂设备,内核定义的驱动体系架构本身就非常复杂。
编写Linux设备驱动要求工程师有非常好的多任务并发控制和同步的基础,因为在驱动中会大量使用自旋锁、互斥、信号量、等待队列等并发与同步机制。
上述经验值的获取并非朝夕之事,因此要求我们有足够的学习恒心和毅力。对这些重点、难点,本书都会有相应章节进行讲解。
动手实践永远是学习任何软件开发的最好方法,学习Linux设备驱动也不例外。因此,本书专门配备了一款基于S3C6410的ARM11开发板LDD6410(全称Linux Device Drivers 6410,即Linux设备驱动开发6410专用板),本书中的所有实例均可在该电路板上直接执行。
阅读经典书籍和参与Linux社区的讨论也是非常好的学习方法。Linux内核源代码中包含了一个Documentation目录,其中包含了一批内核设计的文档,全部是文本文件。很遗憾,这些文档的组织不太好,内容也不够细致。本书的参考目录中给出了一些优秀的参考书籍和Linux网站,并进行了简单的介绍。
学习Linux设备驱动的一个注意事项是要避免管中窥豹、只见树木不见森林,因为各类Linux设备驱动都从属于一个Linux设备驱动的架构,单纯而片面地学习几个函数、几个数据结构是不可能理清驱动中各组成部分之间的关系的。因此,Linux驱动的分析方法是点面结合,将对函数和数据结构的理解放在整体架构的背景之中。这是本书各章节讲解驱动的方法。