深度学习:不到25行代码实现口罩识别(电脑端可直接运行)

简介: 深度学习:不到25行代码实现口罩识别(电脑端可直接运行)

深度学习:不到25行代码实现口罩识别(电脑端可直接运行)

在这里插入图片描述

导入依赖


pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

代码实现

import cv2
import paddlehub as hub

module = hub.Module(name="pyramidbox_lite_mobile_mask")
video_capture = cv2.VideoCapture(0)
font = cv2.cv2.FONT_HERSHEY_SIMPLEX
while True:
    ret, frame = video_capture.read()

    results = module.face_detection(images=[frame], confs_threshold=0.5,shrink = 0.1)
    try:
        print(results)
        for i in results[0]['data']:
            if 'NO' not in i['label']:
                cv2.rectangle(frame, (i['left'], i['top']), (i['right'], i['bottom']), (0, 255, 0), 2)
                cv2.putText(frame, i['label']+str(round(i['confidence'],2)), (i['left'], i['top']), font, 1, (0, 255, 0), 1)
            else:
                cv2.rectangle(frame, (i['left'], i['top']), (i['right'], i['bottom']), (0, 0, 255), 2)
                cv2.putText(frame, i['label']+str(round(i['confidence'],2)), (i['left'], i['top']), font, 1, (0, 0, 255), 1)
    except:
        pass
    if cv2.waitKey(25) & 0xFF == ord('q'):
        break
    cv2.imshow('Video', frame)

在这里插入图片描述

参考

opencv
paddlepaddle

目录
相关文章
|
7月前
|
机器学习/深度学习 存储 Serverless
【动手学深度学习】深入浅出深度学习之利用神经网络识别螺旋状数据集
【动手学深度学习】深入浅出深度学习之利用神经网络识别螺旋状数据集
110 27
|
7月前
|
机器学习/深度学习 自然语言处理
利用深度学习技术改进自然语言处理中的命名实体识别
命名实体识别(Named Entity Recognition, NER)在自然语言处理领域扮演着重要角色,但传统方法在处理复杂语境和多样化实体时存在局限性。本文将探讨如何利用深度学习技术,特别是基于预训练模型的方法,来改进命名实体识别,提高其在现实场景中的性能和适用性。
|
7月前
|
机器学习/深度学习 计算机视觉 异构计算
构建高效图像分类器:深度学习在视觉识别中的应用
【5月更文挑战第30天】 在计算机视觉领域,图像分类任务是基础且关键的一环。随着深度学习技术的兴起,卷积神经网络(CNN)已成为图像识别的强有力工具。本文将探讨如何构建一个高效的图像分类器,着重分析CNN架构、训练技巧以及优化策略。通过实验对比和案例研究,我们揭示了深度学习模型在处理复杂视觉数据时的优势和挑战,并提出了改进方向,以期达到更高的准确率和更快的处理速度。
|
5月前
|
机器学习/深度学习 TensorFlow 数据处理
使用Python实现深度学习模型:医学影像识别与疾病预测
【7月更文挑战第24天】 使用Python实现深度学习模型:医学影像识别与疾病预测
70 4
|
6月前
|
机器学习/深度学习 并行计算 算法框架/工具
为什么深度学习模型在GPU上运行更快?
为什么深度学习模型在GPU上运行更快?
78 2
|
5月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
6月前
|
机器学习/深度学习 算法
深度学习在医学影像识别中的应用与挑战
传统的医学影像识别技术在面对复杂疾病和图像异常时存在一定局限性,而深度学习作为一种新兴的人工智能技术,为医学影像识别带来了革命性的变革。本文将介绍深度学习在医学影像识别中的应用现状,并探讨应用中面临的挑战和未来发展方向。
56 3
|
7月前
|
机器学习/深度学习 数据安全/隐私保护
深度学习在医学影像识别中的应用与挑战
传统的医学影像识别方法在面对复杂的医学图像时存在一定局限性,而深度学习技术的快速发展为医学影像识别带来了新的希望。本文探讨了深度学习在医学影像识别中的应用现状,分析了其面临的挑战,并展望了未来发展的趋势。
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真
**算法预览图展示睁眼闭眼识别效果;使用Matlab2022a,基于GoogLeNet的CNN模型,对图像进行分类预测并可视化。核心代码包括图像分类及随机样本显示。理论概述中,GoogLeNet以高效Inception模块实现眼部状态的深度学习识别,确保准确性与计算效率。附带三张相关图像。**
|
6月前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的人脸面部口罩检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的人脸面部口罩检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测