数模-03-优化模型实例

简介: 数模-03-优化模型实例

image.png

首先先仅满足课程数最少:

model:
sets:
item/1..9/:c,x;
endsetsdata:
c=5,4,4,3,4,3,2,2,3;
enddatamin=@sum(item(i):x(i));
!课程数约束;
x(1)+x(2)+x(3)+x(4)+x(5)>=2;
x(3)+x(5)+x(6)+x(8)+x(9)>=3;
x(4)+x(6)+x(7)+x(9)>=2;
!先修课约束;
x(3)<=x(2);x(3)<=x(1);
x(4)<=x(7);
x(5)<=x(2);x(5)<=x(1);
x(6)<=x(7);
x(8)<=x(5);
x(9)<=x(1);x(9)<=x(2);
@for(item(i):@bin(x(i)));
end

求得课程数最少为6;后面又引进了学分最多,可以在课程数最少的基础上进行约束

model:
sets:
item/1..9/:c,x;
endsetsdata:
c=5,4,4,3,4,3,2,2,3;
enddatamax=@sum(item(i):c(i)*x(i));
@sum(item(i):x(i))=6;
!课程数约束;
x(1)+x(2)+x(3)+x(4)+x(5)>=2;
x(3)+x(5)+x(6)+x(8)+x(9)>=3;
x(4)+x(6)+x(7)+x(9)>=2;
!先修课约束;
x(3)<=x(2);x(3)<=x(1);
x(4)<=x(7);
x(5)<=x(2);x(5)<=x(1);
x(6)<=x(7);
x(8)<=x(5);
x(9)<=x(1);x(9)<=x(2);
@for(item(i):@bin(x(i)));
end

即可求得结果

目录
相关文章
|
5月前
|
机器学习/深度学习 算法 Python
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
293 0
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
|
6月前
|
算法 调度
电网两阶段鲁棒优化调度模型(含matlab程序)
电网两阶段鲁棒优化调度模型(含matlab程序)
|
2月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
6月前
|
机器学习/深度学习 自然语言处理
YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)
YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)
347 2
|
5月前
|
机器学习/深度学习 算法 搜索推荐
通过元学习优化增益模型的性能:基础到高级应用总结
在当今数据驱动的决策过程中,因果推断和增益模型扮演了至关重要的角色。因果推断帮助我们理解不同变量间的因果关系,而增益模型则专注于评估干预措施对个体的影响,从而优化策略和行动。然而,要提高这些模型的精确度和适应性,引入元学习器成为了一个创新的解决方案。元学习器通过将估计任务分解并应用不同的机器学习技术,能够有效增强模型的表现。接下来,我们将详细探讨如何利用元学习优化增益模型的性能,特别是通过S-Learner、T-Learner和X-Learner这几种估计器。
106 1
|
4月前
|
机器学习/深度学习 人工智能 分布式计算
算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化
机器学习中的超参数调优是提升模型性能的关键步骤,包括网格搜索、随机搜索、贝叶斯优化和遗传算法等方法。网格搜索通过穷举所有可能的超参数组合找到最优,但计算成本高;随机搜索则在预设范围内随机采样,降低计算成本;贝叶斯优化使用代理模型智能选择超参数,效率高且适应性强;遗传算法模拟生物进化,全局搜索能力强。此外,还有多目标优化、异步并行优化等高级技术,以及Hyperopt、Optuna等优化库来提升调优效率。实践中,应结合模型类型、数据规模和计算资源选择合适的调优策略。
177 0
算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化
|
6月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
R语言 线性混合效应模型实战案例
R语言 线性混合效应模型实战案例
Matlab:如何利用层次分析法(升级版)计算具有多重指标的判断矩阵的一致性检验和权重
Matlab:如何利用层次分析法(升级版)计算具有多重指标的判断矩阵的一致性检验和权重
349 0
|
存储 算法 调度
Matlab+Yalmip两阶段鲁棒优化通用编程指南
主要包含8大内容: ①.拿到一个复杂的两阶段鲁棒优化问题的分析步骤和方法。 ②.采用Yalmip工具箱中的uncertain函数和鲁棒优化模块求解两阶段鲁棒优化的子问题。 ③.Yalmip工具箱中的鲁棒优化模块和常规的求解思路有什么异同。 ④.使用KKT条件求解两阶段鲁棒优化的子问题。 ⑤.使用对偶变换求解两阶段鲁棒优化的子问题。 ⑥.采用Yalmip工具箱的内置函数,将线性约束写成紧凑矩阵形式的方法。 ⑦.矩阵形式的两阶段鲁棒优化问题,如何快速写出子问题内层优化的KKT条件。 ⑧.矩阵形式的两阶段鲁棒优化问题,如何快速写出子问题内层优化的对偶问题。