YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)

简介: YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)

一、本文介绍

本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法就是我们的Upsample)的性能。CARAFE的核心思想是:使用输入特征本身的内容来指导上采样过程,从而实现更精准和高效的特征重建。CARAFE是一种即插即用的上采样机制其本身并没有任何的使用限制所以在YOLOv5的改进中其也可以做到一个提高精度的改进方法


image.png

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、CARAFE的机制原理

image.png

2.1 CARAFE的基本原理

CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。这种方法首次在论文《CARAFE: Content-Aware ReAssembly of FEatures》中提出,旨在改进传统的上采样方法(如双线性插值和转置卷积)的性能。

CARAFE通过在每个位置利用底层内容信息来预测重组核,并在预定义的附近区域内重组特征。由于内容信息的引入,CARAFE可以在不同位置使用自适应和优化的重组核,从而比主流的上采样操作符(如插值或反卷积)表现更好。

CARAFE包括两个步骤首先预测每个目标位置的重组核,然后用预测的核重组特征。给定一个尺寸为 H×W×C 的特征图和一个上采样比率 U,CARAFE将产生一个新的尺寸为 UH×UW×C 的特征图。其次CARAFE的核预测模块根据输入特征的内容生成位置特定的核,然后内容感知重组模块使用这些核来重组特征。

CARAFE可以无缝集成到需要上采样操作的现有框架中。在主流的密集预测任务中,CARAFE对高级和低级任务(如对象检测、实例分割、语义分割和图像修复)都有益处,且额外的参数微不足道。

2.2 图解CARAFE原理

下图是CARAFE工作机制的示意图。左侧展示了来自Mask R-CNN的多层FPN(特征金字塔网络)特征(直至虚线左侧),右侧展示了集成了CARAFE的Mask R-CNN(直至虚线右侧)。对于采样的位置,该图显示了FPN自上而下路径中累积重组的区域。这样一个区域内的信息被重组到相应的重组中心。

image.png

下图展示了CARAFE的整体框架。CARAFE由两个关键部分组成,即核预测模块和内容感知重组模块。在这个框架中,一个尺寸为 H×W×C 的特征图被上采样因子 U(=2) 倍。

image.png

下图展示了集成了CARAFE的特征金字塔网络(FPN)架构。在这个架构中,CARAFE在FPN的自上而下路径中将特征图的尺寸上采样2倍。CARAFE通过无缝替换最近邻插值而整合到FPN中,从而优化了特征上采样的过程。

image.png

2.3 CARAFE的效果图

下图比较了COCO 2017验证集上基线(上面)和CARAFE(下面)在实例分割结果方面的差异。

总结:我个人觉得其实其效果提升比较一般甚至某些数据集上提点很微弱,但是它主要的作用是减少计算量是一个更加轻量化的上采样方法。

image.png

目录
相关文章
|
6月前
|
机器学习/深度学习 传感器 自动驾驶
狂风暴雨依旧YOLO | 全新数据集,全新任务,促进极端降雨条件下目标检测的优化和发展
狂风暴雨依旧YOLO | 全新数据集,全新任务,促进极端降雨条件下目标检测的优化和发展
234 0
|
机器学习/深度学习 编解码 固态存储
超轻目标检测 | 超越 NanoDet-Plus、YOLOv4-Tiny实时性、高精度都是你想要的!
超轻目标检测 | 超越 NanoDet-Plus、YOLOv4-Tiny实时性、高精度都是你想要的!
759 0
超轻目标检测 | 超越 NanoDet-Plus、YOLOv4-Tiny实时性、高精度都是你想要的!
|
6月前
|
机器学习/深度学习 编解码 自然语言处理
YOLOv8改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)
YOLOv8改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)
436 2
|
4月前
|
测试技术 计算机视觉 网络架构
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
|
6月前
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
|
6月前
|
机器学习/深度学习 算法 PyTorch
【SAHI】即插即用| SAHI操作可有效解决小目标检测过程中的难点!实现涨点
【SAHI】即插即用| SAHI操作可有效解决小目标检测过程中的难点!实现涨点
377 1
|
6月前
|
机器学习/深度学习 安全 自动驾驶
部署必备 | 目标检测量化效果差不知道怎么解决?Cal-DETR带来更全面的分析基础!
部署必备 | 目标检测量化效果差不知道怎么解决?Cal-DETR带来更全面的分析基础!
88 0
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
YOLOv8改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
225 0
|
6月前
|
自然语言处理 安全 算法
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
150 0
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
|
6月前
|
机器学习/深度学习 人工智能 算法
基于AidLux的工业视觉少样本缺陷检测实战应用---深度学习分割模型UNET的实践部署
  工业视觉在生产和制造中扮演着关键角色,而缺陷检测则是确保产品质量和生产效率的重要环节。工业视觉的前景与发展在于其在生产制造领域的关键作用,尤其是在少样本缺陷检测方面,借助AidLux技术和深度学习分割模型UNET的实践应用,深度学习分割模型UNET的实践部署变得至关重要。
159 1