Python-OpenCV图像处理-07-高斯模糊

简介: Python-OpenCV图像处理-07-高斯模糊

高斯模糊实质上就是一种均值模糊,只是高斯模糊是按照加权平均的,距离越近的点权重越大,距离越远的点权重越小。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

高斯分布的一维和二维原理如下:

 补:高斯分布的标准差σ。标准差代表着数据的离散程度,如果σ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。

importcv2ascvimportnumpyasnpdefclamp(pv):
ifpv>255:
return255ifpv<0:
return0returnpvdefgaussian_noise(image):
h,w,c=image.shapeforrowinrange(h):
forcolinrange(w):
s=np.random.normal(0,20,3)
b=image[row,col,0]#blueg=image[row,col,1]#greenr=image[row,col,2]#redimage[row, col, 0] =clamp(b+s[0])
image[row, col, 1] =clamp(g+s[1])
image[row, col, 2] =clamp(r+s[2])
cv.imshow("niose image",image)
src=cv.imread("C:\\Users\\william\\Pictures\\go.jpg")
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE)
cv.imshow("input image",src)
gaussian_noise(src)
dst=cv.GaussianBlur(src,(5,5),0)
cv.imshow("gaussian",dst)
cv.waitKey(0)
cv.destroyAllWindows()

高斯模糊GaussianBlur函数原型:


GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

src参数表示待处理的输入图像。

ksize参数表示高斯滤波器模板大小。 ksize.width和ksize.height可以不同,但它们都必须是正数和奇数。或者,它们可以是零,即(0, 0),然后从σ计算出来。

sigmaX参数表示 X方向上的高斯内核标准差。

sigmaY参数表示 Y方向上的高斯内核标准差。 如果sigmaY为零,则设置为等于sigmaX,如果两个sigma均为零,则分别从ksize.width和ksize.height计算得到。

 补:若ksize不为(0, 0),则按照ksize计算,后面的sigmaX没有意义。若ksize为(0, 0),则根据后面的sigmaX计算ksize


4.numpy包里的random模块用于生成随机数,random模块里的normal函数表示的是生成高斯随机数。

normal函数默认原型:normal(loc=0.0, scale=1.0, size=None)。

loc参数表示高斯分布的中心点。

scale参数表示高斯分布的标准差σ。

size参数表示产生随机数的个数。size取值可以为(m,n,k),表示绘制m*n*k个样本。

实验图像:


高斯过滤可以很好的过滤掉高斯噪声,他保留了图像的原本轮廓,可以实现毛玻璃效果

image.png

毛玻璃效果:


image.png

目录
相关文章
|
4月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
164 7
|
8月前
|
机器学习/深度学习 存储 监控
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
|
4天前
|
机器学习/深度学习 算法 数据可视化
Python的计算机视觉与图像处理
本文介绍了Python在计算机视觉和图像处理领域的应用,涵盖核心概念、算法原理、最佳实践及应用场景。重点讲解了OpenCV、NumPy、Pillow和Matplotlib等工具的使用,并通过代码实例展示了图像读写、处理和可视化的方法。实际应用包括自动驾驶、人脸识别、物体检测等。未来趋势涉及深度学习、边缘计算和量子计算,同时也讨论了数据不足、模型解释性和计算资源等挑战。
|
2月前
|
计算机视觉 开发者 Python
利用Python进行简单的图像处理
【10月更文挑战第36天】本文将引导读者理解如何使用Python编程语言和其强大的库,如PIL和OpenCV,进行图像处理。我们将从基本的图像操作开始,然后逐步深入到更复杂的技术,如滤波器和边缘检测。无论你是编程新手还是有经验的开发者,这篇文章都将为你提供新的视角和技能,让你能够更好地理解和操作图像数据。
|
3月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
132 2
|
3月前
|
算法 数据可视化 计算机视觉
Python中医学图像处理常用的库
在Python中,医学图像处理常用的库包括:ITK(及其简化版SimpleITK)、3D Slicer、Pydicom、Nibabel、MedPy、OpenCV、Pillow和Scikit-Image。这些库分别擅长图像分割、配准、处理DICOM和NIfTI格式文件、图像增强及基础图像处理等任务。选择合适的库需根据具体需求和项目要求。
119 0
|
3月前
|
数据挖掘 计算机视觉 Python
基于Python的简单图像处理技术
【10月更文挑战第4天】在数字时代,图像处理已成为不可或缺的技能。本文通过Python语言,介绍了图像处理的基本方法,包括图像读取、显示、编辑和保存。我们将一起探索如何使用PIL库进行图像操作,并通过实际代码示例加深理解。无论你是编程新手还是图像处理爱好者,这篇文章都将为你打开一扇新窗,让你看到编程与创意结合的无限可能。
WK
|
5月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
57 4
|
5月前
|
计算机视觉 开发者 Python
使用Python进行简单图像处理
【8月更文挑战第31天】 本文将介绍如何使用Python编程语言来处理图像。我们将通过代码示例来展示如何读取、显示、编辑和保存图像文件。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供一个清晰的指引,帮助你开始自己的图像处理项目。
|
7月前
|
机器学习/深度学习 算法框架/工具 数据安全/隐私保护
Pillow:Python图像处理的强大工具
**Pillow**是Python的图像处理库,源自PIL,支持多种格式如JPEG、PNG等。本文介绍了Pillow的基本用法和高级特性。安装Pillow后,可通过`Image.open()`打开图像,再使用`resize()`、`crop()`、`rotate()`等方法进行图像操作,如缩放、裁剪和旋转。此外,Pillow还支持颜色转换、滤镜应用(如模糊)、图像增强(亮度、对比度调整)和处理流水线。在实际应用中,Pillow常用于生成网页缩略图、添加水印及配合机器学习库进行图像预处理。【6月更文挑战第6天】
169 1