python 线程 ~~ ~~~为面试开辟VIP通道~~~~~测试、死锁、全局变量共享、守护主线程等。。。。。。(2)

简介: python 线程 ~~ ~~~为面试开辟VIP通道~~~~~测试、死锁、全局变量共享、守护主线程等。。。。。。(2)

5、线程之间共享全局变量

# TODO 线程之间共享全局变量
import threading
import time
my_list=[]
#写入数据
def write_data():
    for i in range(5):
        my_list.append(i)
        time.sleep(0.1)
    print("write_data",my_list)
# 读取数据
def read_data():
    print("read_data",my_list)
if __name__ == '__main__':
    #  创建写入数据线程
    write_dataThred=threading.Thread(target=write_data)
    # 创建读取数据线程
    read_dataThred=threading.Thread(target=read_data)
    #开启进程
    write_dataThred.start()
    # 主线程等待写入线程执行完成以后代码再继续往下执行
    write_dataThred.join()# 等待子线程执行之后再执行下一次代码,不加这行你会发现read_data  读不到数据
    print("开始读取数据")

结果:image.pngread_data 哪去了??????image.png从上图可以发现只要重新启动read_dataThred线程就可以了你难道认为这样就可以了吗,太天真了。-_-下面再引入一个例子。

# TODO 线程之间共享全局变量出现问题     问题:线程不一致,交替拿变量      解决方法     保持线程同步,同一时刻只能有一个线程去操作全局变量    两种方式   线程等待  +  互斥所
import threading
#  创建函数,实现循环100万次,每次全局变量加一
g_num=0
# 每次全局变量加一
def sun_num():
    for i in range(1000000):
        global g_num
        g_num+=1
    print("sun_num",g_num)
# 每次全局变量加一
def sun_num2():
    for i in range(1000000):
        global g_num
        g_num+=1
    print("sun_num2", g_num)
if __name__ == '__main__':
    sun_numThred=threading.Thread(target=sun_num)
    sun_num2Thred=threading.Thread(target=sun_num2)
    #开启线程
    sun_numThred.start()
    sun_num2Thred.start()

结果:image.pngimage.png结果是出结果了,但是你们细看一下代码,你们不感觉这个答案有问题吗?有没有这样一个疑问,for循环,遍历共享变量,最后应该是1000000和2000000啊,怎么打印出来的是1000000和1456202,而且细心的你还会发现每次的大男孩不一样。想要解决问题应该怎么办呢?问题总结:线程不一致,交替拿变量 解决方法 保持线程同步,同一时刻只能有一个线程去操作全局变量 两种方式 线程等待 + 互斥所线程等待:join出场ticle/details/123494962

# TODO 线程之间共享全局变量出现问题     问题:线程不一致,交替拿变量      解决方法     保持线程同步,同一时刻只能有一个线程去操作全局变量    两种方式   线程等待  +  互斥所
import threading
#  创建函数,实现循环100万次,每次全局变量加一
g_num=0
# 每次全局变量加一
def sun_num():
    for i in range(1000000):
        global g_num
        g_num+=1
    print("sun_num",g_num)
# 每次全局变量加一
def sun_num2():
    for i in range(1000000):
        global g_num
        g_num+=1
    print("sun_num2", g_num)
if __name__ == '__main__':
    sun_numThred=threading.Thread(target=sun_num)
    sun_num2Thred=threading.Thread(target=sun_num2)
    #开启线程
    sun_numThred.start()
    # # TODO 方法一
    sun_numThred.join()
    sun_num2Thred.start()

结果:image.png线程等待,当前线程等待其他线程执行某些操作,典型场景就是生产者消费者模式,在任务条件不满足时,等待其他线程的操作从而使得条件满足。等到其他线程完成操作释放后再分配线程。当前线程获得资源继续执行操作。

6、互斥锁

****互斥锁 Lock():在编程中,引入了对象互斥锁的概念,来保证共享数据操作的完整性。每个对象都对应于一个可称为" 互斥锁" 的标记,这个标记用来保证在任一时刻,只能有一个线程访问该对象。

互斥锁三步骤 ~~~ 创建一把锁==》上锁==》释放锁 三步走

#  TODO   互斥锁  Lock()
import threading
# # TODO 创建一把锁==》上锁==》释放锁   三步走
# mutext=threading.Lock()
# mutext.acquire()
# mutext.release()
#定义全局变量
g_num=0
# 创建一把锁
mutext=threading.Lock()
# 每次全局变量加一
def sun_num():
    # TODO   上锁
    mutext.acquire()
    for i in range(1000000):
        global g_num
        g_num+=1
    print("sun_num",g_num)
    # TODO  释放锁
    mutext.release()
# 每次全局变量加一
def sun_num2():
    # TODO 上锁
    mutext.acquire()
    for i in range(1000000):
        global g_num
        g_num+=1
    print("sun_num2", g_num)
if __name__ == '__main__':
    sun_numThred=threading.Thread(target=sun_num)
    sun_num2Thred=threading.Thread(target=sun_num2)
    #开启线程
    sun_numThred.start()
    sun_num2Thred.start()

结果:image.png是不是非常神奇。主义事项:一、互斥锁就三步骤 1、创建一把锁 2、上锁 3、释放锁 。二、保证共享数据操作的完整性三、等当前上锁线程执行完成,释放锁后其他线程才能申请资源

7、死锁

死锁是指两个或两个以上的线程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去

# TODO  死锁
import threading
import time
# 创建互斥锁
lock=threading.Lock()
def get_value(index):
    #上锁
    lock.acquire()
    print(threading.current_thread())
    my_list=[3,4,7,2]
    # 根据下标释放取值
    if index>=len(my_list):
        print("下标越界:",index)
        # TODO  当下标越界了释放锁,让后面线程继续取值
        # lock.release()
        return
    value=my_list[index]
    print(value)
    time.sleep(0.2)
    #释放锁
    # lock.release()
if __name__ == '__main__':
    #模拟大量线程取值
    for i in range(30):
        sub_thred=threading.Thread(target=get_value,args=(i,))
        sub_thred.start()

结果:image.png注释掉释放锁的操作,线程刚执行就卡住了,产生了死锁。

打开释放所操作

# TODO  死锁
import threading
import time
# 创建互斥锁
lock=threading.Lock()
def get_value(index):
    #上锁
    lock.acquire()
    print(threading.current_thread())
    my_list=[3,4,7,2]
    # 根据下标释放取值
    if index>=len(my_list):
        print("下标越界:",index)
        # TODO  当下标越界了释放锁,让后面线程继续取值
        lock.release()
        return
    value=my_list[index]
    print(value)
    time.sleep(0.2)
    #释放锁
    lock.release()
if __name__ == '__main__':
    #模拟大量线程取值
    for i in range(30):
        sub_thred=threading.Thread(target=get_value,args=(i,))
        sub_thred.start()

结果:image.png1、因为我们是用方式传参,循环30次,索引0~29。

2、我们会发现我们在判断越界后,因为释放锁所以仍会输出。

3、加入互斥锁解除了死锁危机。

目录
相关文章
|
8月前
|
Java C++ Python
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
|
8月前
|
设计模式 Unix Python
【面试宝典】深入Python高级:直戳痛点的题目演示(上)
【面试宝典】深入Python高级:直戳痛点的题目演示(上)
|
10月前
|
测试技术 持续交付
探索式测试:软件质量的守护者
在软件开发生命周期中,确保产品质量是至关重要的一环。探索式测试,作为一种动态的软件测试方法,强调测试人员的个人技能和经验的运用,以发现那些可能被传统测试方法忽略的问题。本文将介绍探索式测试的核心理念、实施步骤以及它在现代软件开发中的不可替代性,同时通过具体案例分析,展现其在实际工作中的应用价值和对提升软件质量的重大贡献。
|
11月前
|
数据采集 机器学习/深度学习 数据可视化
了解数据科学面试中的Python数据分析重点,包括Pandas(DataFrame)、NumPy(ndarray)和Matplotlib(图表绘制)。
【7月更文挑战第5天】了解数据科学面试中的Python数据分析重点,包括Pandas(DataFrame)、NumPy(ndarray)和Matplotlib(图表绘制)。数据预处理涉及缺失值(dropna(), fillna())和异常值处理。使用describe()进行统计分析,通过Matplotlib和Seaborn绘图。回归和分类分析用到Scikit-learn,如LinearRegression和RandomForestClassifier。
201 3
|
10月前
|
Cloud Native Java 调度
项目环境测试问题之线程同步器会造成执行完任务的worker等待的情况如何解决
项目环境测试问题之线程同步器会造成执行完任务的worker等待的情况如何解决
|
10月前
|
Java 测试技术
Java SpringBoot Test 单元测试中包括多线程时,没跑完就结束了
Java SpringBoot Test 单元测试中包括多线程时,没跑完就结束了
210 0
|
12月前
|
存储 测试技术
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
117 0
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
|
11月前
|
算法 Java Linux
python中的面试常考知识点
python中的面试常考知识点
|
数据采集 Java 数据挖掘
最新Python+OpenCV+dlib汽车驾驶员疲劳驾驶检测!,2024年最新网易云java面试
最新Python+OpenCV+dlib汽车驾驶员疲劳驾驶检测!,2024年最新网易云java面试
最新Python+OpenCV+dlib汽车驾驶员疲劳驾驶检测!,2024年最新网易云java面试
|
数据采集 算法 网络协议
最新Python 面试常见问题(1),2024年最新面试官必问的10个问题
最新Python 面试常见问题(1),2024年最新面试官必问的10个问题
最新Python 面试常见问题(1),2024年最新面试官必问的10个问题

推荐镜像

更多