基于Python装饰器的向量化计算速度对比

简介: timer是一个装饰器,功能是给被装饰的函数计时。如果要进一步了解装饰器的使用,点击此链接Python闭包函数和装饰器sumOfLoop函数是常规的使用for进行循环遍历求和的方法;sumOfComprehension函数使用推导式得出新的列表,然后用内置sum函数求出列表的和;sumOfVectorization函数使用np.dot方法求出两个数据类型的为numpy.ndarray的对象的点积,两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。

timer是一个装饰器,功能是给被装饰的函数计时。如果要进一步了解装饰器的使用,点击此链接Python闭包函数和装饰器
sumOfLoop函数是常规的使用for进行循环遍历求和的方法;
sumOfComprehension函数使用推导式得出新的列表,然后用内置sum函数求出列表的和;
sumOfVectorization函数使用np.dot方法求出两个数据类型的为numpy.ndarray的对象的点积,两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn
np.random.rand()方法需要传入一个参数,例如传入参数为5,则返回一个数据类型为numpy.ndarray、长度为5、其中元素的值范围为0-1的对象,如下图所示:

img_1b837785833937e571d8fe7e87f87295.png
np.random.rand()方法.png

from time import time
import numpy as np

def timer(func):
    def inner(*args,**kwargs):
        start = time()
        result = func(*args,**kwargs)
        end = time()
        usedTime = 1000 * (end - start)
        print("%s function used %.2f ms,return %.4f" %(func.__name__,usedTime,result))
        return result
    return inner

@timer
def sumOfLoop(np_array):
    result = 0
    for i in np_array:
        result += i * i
    return result

@timer
def sumOfComprehension(np_array):
    return sum([i * i for i in np_array])

@timer
def sumOfVectorization(np_array):
    return np.dot(np_array,np_array)

if __name__ == "__main__":
    print("计算小数平方和三种方法对比:")
    n = np.random.rand(3000000)
    a = sumOfLoop(n)
    print(a)
    sumOfComprehension(n)
    sumOfVectorization(n)
    print("计算整数平方和三种方法对比:")
    n = np.array(range(3000000)).astype('int64')
    sumOfLoop(n)
    sumOfComprehension(n)
    sumOfVectorization(n)

本文作者在2018年7月13日晚11点的运行结果如下:

计算小数平方和三种方法对比:
sumOfLoop function used 1036.76 ms,return 999213.4882
sumOfComprehension function used 1103.75 ms,return 999213.4882
sumOfVectorization function used 2.00 ms,return 999213.4882
计算整数平方和三种方法对比:
sumOfLoop function used 545.89 ms,return 8999995500000499712.0000
sumOfComprehension function used 718.86 ms,return 8999995500000499712.0000
sumOfVectorization function used 5.00 ms,return 8999995500000499712.0000

目录
相关文章
|
1月前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
90 59
|
1月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
106 61
Python装饰器实战:打造高效性能计时工具
|
2月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
49 5
|
2月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
2月前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
64 18
|
2月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
50 7
|
2月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
73 6
|
2月前
|
测试技术 开发者 Python
深入理解Python装饰器:从基础到高级应用
本文旨在为读者提供一个全面的Python装饰器指南,从其基本概念讲起,逐步深入探讨其高级应用。我们将通过实例解析装饰器的工作原理,并展示如何利用它们来增强函数功能、控制程序流程以及实现代码的模块化。无论你是Python初学者还是经验丰富的开发者,本文都将为你提供宝贵的见解和实用的技巧,帮助你更好地掌握这一强大的语言特性。
73 4
|
2月前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。

热门文章

最新文章

推荐镜像

更多