AdaGrad在迭代过程中不断调整学习率

简介: q

该类可实现 Adagrad 优化方法(Adaptive Gradient),Adagrad 是一种自适应优化方法,是自适应的为各个参数分配不同的学习率。这个学习率的变化,会受到梯度的大小和迭代次数的影响。梯度越大,学习率越小;梯度越小,学习率越大。

Adagrad 代码
'''
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认: 1e-2)
lr_decay (float, 可选) – 学习率衰减(默认: 0)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
initial_accumulator_value - 累加器的起始值,必须为正。
'''
class torch.optim.Adagrad(params, lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0)
Adagrad 算法解析

    AdaGrad对学习率进行了一个约束,对于经常更新的参数,我们已经积累了大量关于它的知识,不希望被单个样本影响太大,希望学习速率慢一些;对于偶尔更新的参数,我们了解的信息太少,希望能从每个偶然出现的样本身上多学一些,即学习速率大一些。这样大大提高梯度下降的鲁棒性。而该方法中开始使用二阶动量,才意味着“自适应学习率”优化算法时代的到来。
    在SGD中,我们每次迭代对所有参数进行更新,因为每个参数使用相同的学习率。而AdaGrad在每个时间步长对每个参数使用不同的学习率。AdaGrad消除了手动调整学习率的需要。AdaGrad在迭代过程中不断调整学习率,并让目标函数中的每个参数都分别拥有自己的学习率。大多数实现使用学习率默认值为0.01,开始设置一个较大的学习率。

    AdaGrad引入了二阶动量。二阶动量是迄今为止所有梯度值的平方和,即它是用来度量历史更新频率的。也就是说,我们的学习率现在是,从这里我们就会发现 是恒大于0的,而且参数更新越频繁,二阶动量越大,学习率就越小,这一方法在稀疏数据场景下表现非常好,参数更新公式如下: 

                                                        (13)

                            (14)

AdaGrad总结

    AdaGrad在每个时间步长对每个参数使用不同的学习率。并且引入了二阶动量,二阶动量是迄今为止所有梯度值的平方和。

优点:AdaGrad消除了手动调整学习率的需要。AdaGrad在迭代过程中不断调整学习率,并让目标函数中的每个参数都分别拥有自己的学习率。

缺点:a.仍需要手工设置一个全局学习率 , 如果 设置过大的话,会使regularizer过于敏感,对梯度的调节太大

    b.在分母中累积平方梯度,由于每个添加项都是正数,因此在训练过程中累积和不断增长。这导致学习率不断变小并最终变得无限小,此时算法不再能够获得额外的知识即导致模型不会再次学习。
相关文章
|
2月前
|
存储 资源调度 并行计算
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。
1252 9
|
2月前
|
存储 安全 数据处理
从GDPR“天价罚单”到数据安全法“安全评估”:代购系统的合规“避雷指南”
代购系统面临欧盟GDPR与中国《数据安全法》双重合规挑战。本文从法律框架、合规要点、技术工具与操作流程四方面,解析跨境数据处理的应对策略,助力企业实现安全合规的数据跨境流动。
|
1月前
|
存储 缓存 中间件
《金融对账系统雪崩隐患的深度复盘与架构重生》
本文复盘了金融级支付对账系统因分布式缓存设计缺陷引发的隐性危机:系统上线后,对账高峰时段出现节点“假死”、数据不一致问题,却无明显资源耗尽迹象,且问题间歇性发生。排查发现,高并发下任务调度框架返回异常商户ID,生成无效缓存Key,叠加缓存客户端“批量合并请求”与“无限重试”设计,导致线程池阻塞;节点恢复后又因任务状态未同步,引发数据重复处理或遗漏。通过全链路数据校验、缓存交互优化(分段查询+降级熔断)、分布式锁与全局状态同步,系统问题得以解决,最终提炼出分布式系统开发的四大核心原则,为后端架构设计提供参考。
103 33
|
6月前
|
数据安全/隐私保护
基于矢量控制器的PMSM永磁同步电机速度控制系统simulink建模与仿真
本课题基于MATLAB2022a,通过Simulink建模与仿真,实现PMSM永磁同步电机速度控制系统的矢量控制。系统采用PID控制器调节转速,输出包括电机转速跟踪曲线、PID控制器输出曲线及电磁转矩Te曲线。PMSM以其高效率和良好动态响应广泛应用于工业自动化和电动汽车领域。矢量控制利用Clarke和Park变换,将静止坐标系转换为旋转dq坐标系,实现电流解耦与精确控制,简化系统复杂度。仿真结果无水印,提供完整程序与模型。
|
机器学习/深度学习 编解码 算法框架/工具
经典神经网络论文超详细解读(二)——VGGNet学习笔记(翻译+精读)
经典神经网络论文超详细解读(二)——VGGNet学习笔记(翻译+精读)
602 1
经典神经网络论文超详细解读(二)——VGGNet学习笔记(翻译+精读)
|
11月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
2650 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
机器学习/深度学习 PyTorch 算法框架/工具
【机器学习】Softmax回归探索
【机器学习】Softmax回归探索
454 8
|
机器学习/深度学习 人工智能 自然语言处理
【专家系统】专家系统概述,应用场景,项目实践及案例分析,附带代码示例
专家系统是一种智能计算机程序系统,它包含了某个领域专家水平的知识与经验,能够应用人工智能技术和计算机技术,根据系统中的知识与经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要人类专家处理的复杂问题。
1468 1
|
算法 数据挖掘 数据库
|
机器学习/深度学习 数据采集 人工智能
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
706 0