该类可实现 Adagrad 优化方法(Adaptive Gradient),Adagrad 是一种自适应优化方法,是自适应的为各个参数分配不同的学习率。这个学习率的变化,会受到梯度的大小和迭代次数的影响。梯度越大,学习率越小;梯度越小,学习率越大。
Adagrad 代码
'''
params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
lr (float, 可选) – 学习率(默认: 1e-2)
lr_decay (float, 可选) – 学习率衰减(默认: 0)
weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
initial_accumulator_value - 累加器的起始值,必须为正。
'''
class torch.optim.Adagrad(params, lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0)
Adagrad 算法解析
AdaGrad对学习率进行了一个约束,对于经常更新的参数,我们已经积累了大量关于它的知识,不希望被单个样本影响太大,希望学习速率慢一些;对于偶尔更新的参数,我们了解的信息太少,希望能从每个偶然出现的样本身上多学一些,即学习速率大一些。这样大大提高梯度下降的鲁棒性。而该方法中开始使用二阶动量,才意味着“自适应学习率”优化算法时代的到来。
在SGD中,我们每次迭代对所有参数进行更新,因为每个参数使用相同的学习率。而AdaGrad在每个时间步长对每个参数使用不同的学习率。AdaGrad消除了手动调整学习率的需要。AdaGrad在迭代过程中不断调整学习率,并让目标函数中的每个参数都分别拥有自己的学习率。大多数实现使用学习率默认值为0.01,开始设置一个较大的学习率。
AdaGrad引入了二阶动量。二阶动量是迄今为止所有梯度值的平方和,即它是用来度量历史更新频率的。也就是说,我们的学习率现在是,从这里我们就会发现 是恒大于0的,而且参数更新越频繁,二阶动量越大,学习率就越小,这一方法在稀疏数据场景下表现非常好,参数更新公式如下:
(13)
(14)
AdaGrad总结
AdaGrad在每个时间步长对每个参数使用不同的学习率。并且引入了二阶动量,二阶动量是迄今为止所有梯度值的平方和。
优点:AdaGrad消除了手动调整学习率的需要。AdaGrad在迭代过程中不断调整学习率,并让目标函数中的每个参数都分别拥有自己的学习率。
缺点:a.仍需要手工设置一个全局学习率 , 如果 设置过大的话,会使regularizer过于敏感,对梯度的调节太大
b.在分母中累积平方梯度,由于每个添加项都是正数,因此在训练过程中累积和不断增长。这导致学习率不断变小并最终变得无限小,此时算法不再能够获得额外的知识即导致模型不会再次学习。