而在 GPU 里,这些电路就显得有点多余了,GPU 的整个处理过程是一个流式处理(Stream Processing)的过程。因为没有那么多分支条件,或者复杂的依赖关系,我们可以把 GPU 里这些对应的电路都可以去掉,做一次小小的瘦身,只留下取指令、指令译码、ALU 以及执行这些计算需要的寄存器和缓存就好了。一般来说,我们会把这些电路抽象成三个部分,就是下面图里的 (1)取指令和指令译码、(2)ALU 和(3)执行上下文。
在这里插入图片描述
2、多核并行 和 SIMT【多个并行的ALU】
这样一来,我们的 GPU 电路就比 CPU 简单很多了。于是,我们就可以在一个 GPU 里面,塞很多个这样并行的 GPU 电路来实现计算,就好像 CPU 里面的多核 CPU 一样。和 CPU 不同的是,我们不需要单独去实现什么多线程的计算。因为 GPU 的运算是天然并行的。
在这里插入图片描述我们在上一讲里面其实已经看到,无论是对多边形里的顶点进行处理,还是屏幕里面的每一个像素进行处理,每个点的计算都是独立的。所以,简单地添加多核的 GPU,就能做到并行加速。不过光这样加速还是不够,工程师们觉得,性能还有进一步被压榨的空间。
【SIMT(Single Instruction,Multiple Threads)的引入】
我们在第 27 讲里面讲过,CPU 里有一种叫作 SIMD 的处理技术。这个技术是说,在做向量计算的时候,我们要执行的指令是一样的,只是同一个指令的数据有所不同而已。在 GPU 的渲染管线里,这个技术可就大有用处了。
无论是顶点去进行线性变换,还是屏幕上临近像素点的光照和上色,都是在用相同的指令流程进行计算。所以,GPU 就借鉴了 CPU 里面的 SIMD,用了一种叫作SIMT(Single Instruction,Multiple Threads)的技术。SIMT 呢,比 SIMD 更加灵活。在 SIMD 里面,CPU 一次性取出了固定长度的多个数据,放到寄存器里面,用一个指令去执行。而 SIMT,可以把多条数据,交给不同的线程去处理。
各个线程里面执行的指令流程是一样的,但是可能根据数据的不同,走到不同的条件分支。这样,相同的代码和相同的流程,可能执行不同的具体的指令。这个线程走到的是 if 的条件分支,另外一个线程走到的就是 else 的条件分支了。
于是,我们的 GPU 设计就可以进一步进化,也就是在取指令和指令译码的阶段,取出的指令可以给到后面多个不同的 ALU 并行进行运算。这样,我们的一个 GPU 的核里,就可以放下更多的 ALU,同时进行更多的并行运算了。