常用算法之动态规划法

简介:

            上一篇博客我们讲了分治法,紧接着讲动态规划法:动态规划法和分治法类似,它也是将大问题分解成子问题求解,求最优解,不同的是,如果分解的子问题有很多是相同的,采用分治法相同的子问题会求解多次,很影响效率;动态规划法呢,它会保存已解决的子问题的答案,再有相同的子问题直接用保存的答案就行了,节省了很多计算时间。

      如一张图表示:

      

     

例:


解:我们先求F(5)的解,如下,以二叉树的结构表示

    通过二叉树,我们注意到,F(n)是通过计算它的两个重叠子问题 F(n-1)和F(n-2)的形式来表达的,所以,可以设计一张表填入n+1个F(n)的值。通过下面的表会发现:后一个数等于前面两个数的和。(这就是著名的斐波那契数)


所以,使用动态规划法的情况,对于一个问题具有的性质可以总结为:最优子结构,重叠子问题

适用情况:

   (1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

      (2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

    (3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

 应用实例:

<span style="font-size:14px;">  public class CoinsChange {  
        /**  
         * 硬币找零:动态规划算法  
         *   
         * @param values  
         *            :保存每一种硬币的币值的数组  
         * @param valueKinds  
         *            :币值不同的硬币种类数量,即coinValue[]数组的大小  
         * @param money  
         *            :需要找零的面值  
         * @param coinsUsed  
         *            :保存面值为i的纸币找零所需的最小硬币数  
         */ 
        public static void makeChange(int[] values, int valueKinds, int money,  
                int[] coinsUsed) {  
     
            coinsUsed[0] = 0;  
            // 对每一分钱都找零,即保存子问题的解以备用,即填表  
            for (int cents = 1; cents <= money; cents++) {  
     
                // 当用最小币值的硬币找零时,所需硬币数量最多  
                int minCoins = cents;  
     
                // 遍历每一种面值的硬币,看是否可作为找零的其中之一  
                for (int kind = 0; kind < valueKinds; kind++) {               
                    // 若当前面值的硬币小于当前的cents则分解问题并查表  
                    if (values[kind] <= cents) {  
                        int temp = coinsUsed[cents - values[kind]] + 1;  
                        if (temp < minCoins) {  
                            minCoins = temp;  
                        }  
                    }  
                }  
                // 保存最小硬币数  
                coinsUsed[cents] = minCoins;  
     
                System.out.println("面值为 " + (cents) + " 的最小硬币数 : " 
                        + coinsUsed[cents]);  
            }  
        }  
          
        public static void main(String[] args) {  
     
            // 硬币面值预先已经按降序排列  
            int[] coinValue = new int[] { 25, 21, 10, 5, 1 };  
            // 需要找零的面值  
            int money = 63;  
            // 保存每一个面值找零所需的最小硬币数,0号单元舍弃不用,所以要多加1  
            int[] coinsUsed = new int[money + 1];  
     
            makeChange(coinValue, coinValue.length, money, coinsUsed);  
        }  
    } </span>


相关文章
|
2月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
66 1
|
2月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
5月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
75 8
|
5月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
72 3
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
47 2
|
2月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
94 2
动态规划算法学习三:0-1背包问题
|
2月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
78 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
2月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
161 0
动态规划算法学习二:最长公共子序列
|
2月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
|
2月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
140 0