1.3 MapTask并行度决定机制
maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度
那么,mapTask并行实例是否越多越好呢?其并行度又是如何决定呢?
1.3.1mapTask并行度的决定机制
一个job的map阶段并行度由客户端在提交job时决定
而客户端对map阶段并行度的规划的基本逻辑为:
将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理
这段逻辑及形成的切片规划描述文件,由FileInputFormat实现类的getSplits()方法完成,其过程如下图:
1.3.2 FileInputFormat切片机制
1、切片定义在InputFormat类中的getSplit()方法
2、FileInputFormat中默认的切片机制:
a) 简单地按照文件的内容长度进行切片
b) 切片大小,默认等于block大小
c) 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
比如待处理数据有两个文件:
file1.txt 320M file2.txt 10M |
经过FileInputFormat的切片机制运算后,形成的切片信息如下:
file1.txt.split1-- 0~128 file1.txt.split2-- 128~256 file1.txt.split3-- 256~320 file2.txt.split1-- 0~10M |
3、FileInputFormat中切片的大小的参数配置
通过分析源码,在FileInputFormat中,计算切片大小的逻辑:
Math.max(minSize,Math.min(maxSize, blockSize)); 切片主要由这几个值来运算决定
minsize:默认值:1 配置参数: mapreduce.input.fileinputformat.split.minsize |
maxsize:默认值:Long.MAXValue 配置参数:mapreduce.input.fileinputformat.split.maxsize |
blocksize |
因此,默认情况下,切片大小=blocksize
maxsize(切片最大值):
参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值
minsize (切片最小值):
参数调的比blockSize大,则可以让切片变得比blocksize还大
但是,不论怎么调参数,都不能让多个小文件“划入”一个split
选择并发数的影响因素:
1、运算节点的硬件配置
2、运算任务的类型:CPU密集型还是IO密集型
3、运算任务的数据量
1.4map并行度的经验之谈
如果硬件配置为2*12core + 64G,恰当的map并行度是大约每个节点20-100个map,最好每个map的执行时间至少一分钟。
l 如果job的每个map或者 reduce task的运行时间都只有30-40秒钟,那么就减少该job的map或者reduce数,每一个task(map|reduce)的setup和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。
(mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task
数目(属于同一个Job)是1。也就是说一个task启一个JVM)
l 如果input的文件非常的大,比如1TB,可以考虑将hdfs上的每个block size设大,比如设成256MB或者512MB
1.5 ReduceTask并行度的决定
reducetask的并行度同样影响整个job的执行并发度和执行效率,但与maptask的并发数由切片数决定不同,Reducetask数量的决定是可以直接手动设置:
//默认值是1,手动设置为4
job.setNumReduceTasks(4);
如果数据分布不均匀,就有可能在reduce阶段产生数据倾斜
注意: reducetask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个reducetask
尽量不要运行太多的reduce task。对大多数job来说,最好rduce的个数最多和集群中的reduce持平,或者比集群的reduce slots小。这个对于小集群而言,尤其重要。
1.6 MAPREDUCE程序运行演示
Hadoop的发布包中内置了一个hadoop-mapreduce-example-2.4.1.jar,这个jar包中有各种MR示例程序,可以通过以下步骤运行:
启动hdfs,yarn
然后在集群中的任意一台服务器上启动执行程序(比如运行wordcount):
hadoop jarhadoop-mapreduce-example-2.4.1.jar wordcount /wordcount/data /wordcount/out