最佳实践—如何快速定位及解决数据库问题

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 本文介绍了数据库发生故障时的快速判断方法和解决办法。

如何定位系统瓶颈是否在数据库上

  • 通过Processlist来判断执行以下语句,显示PolarDB-X上所有正在执行的SQL语句。
SHOW PROCESSLIST WHERE INFO IS NOT NULL
  • 一般情况下,语句堆积会伴随着数据库卡慢一起出现,因此如果该语句的显示结果中没有大量执行时间大于0的语句,则基本可以断定问题不在数据库层面,反之,则说明数据库可能存在瓶颈。
  • 通过堆栈信息来判断应用与数据库之间通过TCP协议进行交互,如果数据库层出现瓶颈,则会产生应用将请求通过socket发送给了数据库,但是数据库不返回结果的情况,此时socket会阻塞在read方法上。因此我们可以通过应用当前的堆栈信息来判断是否在数据库层面发生了阻塞。本文以Java应用为例说明:
    1. 通过jstack命令dump堆栈信息。
    2. 在dump出的信息中搜索mysql驱动等待请求返回的堆栈,内容如下:
at java.net.SocketInputStream.socketRead0(Native Method)

at java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
at java.net.SocketInputStream.read(SocketInputStream.java:171)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at com.mysql.jdbc.util.ReadAheadInputStream.fill(ReadAheadInputStream.java:101)
at com.mysql.jdbc.util.ReadAheadInputStream.readFromUnderlyingStreamIfNecessary(ReadAheadInputStream.java:144)
at com.mysql.jdbc.util.ReadAheadInputStream.read(ReadAheadInputStream.java:174)
- locked <0x00000002eb8f2d98> (a com.mysql.jdbc.util.ReadAheadInputStream)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:3183)
at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3659)
at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3649)
at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:4090)
at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:972)
at com.mysql.jdbc.MysqlIO.readAllResults(MysqlIO.java:2497)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2870)
at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2806)
  • 如果有大量的线程的堆栈情况如上例所示,则代表大量线程阻塞在等待数据库返回,说明瓶颈可能在数据库层面,反之,则应重点排查应用本身是否存在瓶颈。

数据库问题快速处置

在通过上述方法判断数据库存在瓶颈之后,推荐依次使用以下方法进行快速恢复。

方法一:KILL所有语句

如果Processlist中显示堆积了很多SQL,建议立即KILL掉所有正在执行的语句,PolarDB-X提供了如下指令进行这个操作:


KILL "ALL"

该语句会KILL掉计算节点与数据节点之间的每一个连接,从而达到结束掉所有语句的效果。

方法二:重启应用

执行方法一后,等待一段时间如果再次产生语句堆积,建议重启应用,避免应用因为处于某种错误的状态,不断的重试高代价的SQL。

方法三:SQL限流

方法2依然无法解决问题之后,建议使用PolarDB-X的CCL_RULES(限流功能)。

  1. 执行SHOW FULL PROCESSLIST命令,找到占比比较高的SQL的模板ID。
+----+---------------+-----------------+----------+-------------------------------+------+-------+-----------------------+-----------------+
| ID | USER | HOST | DB | COMMAND | TIME | STATE | INFO | SQL_TEMPLATE_ID |
+----+---------------+-----------------+----------+-------------------------------+------+-------+-----------------------+-----------------+
| 2 | polardbx_root | *...*:62787 | polardbx | Query | 0 | | show full processlist | NULL |
| 1 | polardbx_root | *...*:62775 | polardbx | Query(Waiting-selectrulereal) | 12 | | select 1 | 9037e5e2 |
+----+---------------+-----------------+----------+-------------------------------+------+-------+-----------------------+-----------------+
2 rows in set (0.08 sec)
  1. 通过模板ID对该类型的SQL进行限流,例如:
CREATE CCL_RULE IF NOT EXISTS `test` ON . TO 'ccltest'@'%'
FOR SELECT
FILTER BY TEMPLATE('9037e5e2')
WITH MAX_CONCURRENCY=10;

方法四:重启数据库

以上方法都无效的情况下,请重启数据库。

相关文章
|
SQL 数据可视化 关系型数据库
开源低代码平台推荐!10款优秀的开源低代码平台!
本文介绍了10款免费开源低代码开发平台,包括JeeLowCode、Ample、WaveMaker、JeecgBoot等,它们各自具备独特优势,如高性能架构、多数据库支持、实时开发部署等,适用于不同开发需求和应用场景,帮助企业高效实现数字化转型。
1994 3
|
存储 5G API
来了,永久免费的图床服务
Markdown爱好者推荐PicGo软件搭配免费图床服务SMMS,解决在Markdown中插入图片的困扰。PicGo支持多种图床,如腾讯云、阿里云和免费的SMMS,提供拖拽上传、压缩图片功能。通过VSCode或Typora配合PicGo插件,能实现图片自动上传并转换为Markdown格式。SMMS提供5GB免费存储,足够个人博客使用。
|
消息中间件 资源调度 Kafka
实时计算 Flink版操作报错合集之遇到akka.remote.OversizedPayloadException错误,如何处理
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
前端开发 JavaScript 定位技术
GPS坐标转百度坐标
GPS坐标转百度坐标
314 1
|
SQL DataWorks 关系型数据库
DataWorks操作报错合集之分区表的分区数量已经达到或者超过系统允许的最大值,该如何解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
SQL 资源调度 Kubernetes
实时计算 Flink版产品使用问题之从上一个checkpoint点位重新启动任务,该如何操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
负载均衡 算法 大数据
[flink 实时流基础] 转换算子
[flink 实时流基础] 转换算子
436 2
|
SQL 监控 druid
MySQL线程池导致的延时卡顿排查
## 问题描述 简单小表的主键点查SQL,单条执行很快,但是放在业务端,有时快有时慢,取了一条慢sql,在MySQL侧查看,执行时间很短。 通过Tomcat业务端监控有显示慢SQL,取slow.log里显示有12秒执行时间的SQL,但是这次12秒的执行在MySQL上记录下来的执行时间都不到1ms。 所在节点的tsar监控没有异常,Tomcat manager监控上没有fgc,Tomcat实
2354 0
MySQL线程池导致的延时卡顿排查
|
消息中间件 SQL 资源调度
实时计算 Flink版产品使用合集之 Flink on YARN 中使用滚动日志时配置不生效如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
259 0