Python数据分析与展示:numpy统计函数与梯度函数-4

简介: Python数据分析与展示:numpy统计函数与梯度函数-4

numpy的统计函数

sum(a, axis=None) 根据轴计算元素和,axis整数或元组
mean(a, axis=None) 根据轴计算元素期望
average(a, axis=None, weights=None) 根据轴计算加权平均数
std(a, axis=None)根据轴计算标准差
var(a, axis=None) 根据轴计算方差 
min(a), max(a)   数组中最大值,最小值
argmin(a), argmax(a) 最大值,最小值降一维后下标
unravel_index(index, shape)根据shape将一维下标转为多维下标
ptp(a) 数组中最大值与最小值差
median(a) 数组中中位数(中值)

numpy的梯度函数


gradient(a) 计算数组的梯度
梯度:连续值之间的变化率,即斜率
XY坐标轴连续三个X坐标对应的Y轴值:a, b, c,其中,b的梯度是: (c‐a)/2
存在两侧值:b = (c‐a)/2
只有一侧值:c = (c‐b)/1

代码实例

# -*- coding: utf-8 -*-
# @File    : func_demo.py
# @Date    : 2018-05-06
import numpy as np
# 初始化测试多维数组
np.random.seed(10)
a = np.random.randint(1, 100, (3, 4))
print(a)
"""
[[10 16 65 29]
 [90 94 30  9]
 [74  1 41 37]]
"""
# 求和
b = np.sum(a)
print(b)  # 496
# 期望
c = np.mean(a, axis=1)
print(c)
# [30.   55.75 38.25]
# 加权平均数
d = np.average(a, axis=1, weights=[10, 5, 1, 1])
print(d)
# [16.11764706 82.88235294 48.41176471]
# 标准差
e = np.std(a)
print(e)
# 30.774267750111548
# 方差
f = np.var(a)
print(f)
# 947.0555555555557
# 最大值与最小值
print(np.min(a)) # 1
print(np.max(a)) # 94
# 扁平化后的下标
print(np.argmin(a)) # 9
print(np.argmax(a)) # 5
# 重塑成多维下标
print(np.unravel_index(np.argmin(a), a.shape))
# (2, 1)
# 数组中最大值与最小值差
print(np.ptp(a)) # 93
# 数组中位数(中值)
print(np.median(a)) # 33.5
# 计算梯度
print(np.gradient(a))
"""
[array([[ 80. ,  78. , -35. , -20. ],
       [ 32. ,  -7.5, -12. ,   4. ],
       [-16. , -93. ,  11. ,  28. ]]), 
array([[  6. ,  27.5,   6.5, -36. ],
       [  4. , -30. , -42.5, -21. ],
       [-73. , -16.5,  18. ,  -4. ]])]
"""
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
81 3
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
108 0
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
113 5
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
2月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
63 2
|
2月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
93 3

热门文章

最新文章