Python数据分析与展示:numpy统计函数与梯度函数-4

简介: Python数据分析与展示:numpy统计函数与梯度函数-4

numpy的统计函数

sum(a, axis=None) 根据轴计算元素和,axis整数或元组
mean(a, axis=None) 根据轴计算元素期望
average(a, axis=None, weights=None) 根据轴计算加权平均数
std(a, axis=None)根据轴计算标准差
var(a, axis=None) 根据轴计算方差 
min(a), max(a)   数组中最大值,最小值
argmin(a), argmax(a) 最大值,最小值降一维后下标
unravel_index(index, shape)根据shape将一维下标转为多维下标
ptp(a) 数组中最大值与最小值差
median(a) 数组中中位数(中值)

numpy的梯度函数


gradient(a) 计算数组的梯度
梯度:连续值之间的变化率,即斜率
XY坐标轴连续三个X坐标对应的Y轴值:a, b, c,其中,b的梯度是: (c‐a)/2
存在两侧值:b = (c‐a)/2
只有一侧值:c = (c‐b)/1

代码实例

# -*- coding: utf-8 -*-
# @File    : func_demo.py
# @Date    : 2018-05-06
import numpy as np
# 初始化测试多维数组
np.random.seed(10)
a = np.random.randint(1, 100, (3, 4))
print(a)
"""
[[10 16 65 29]
 [90 94 30  9]
 [74  1 41 37]]
"""
# 求和
b = np.sum(a)
print(b)  # 496
# 期望
c = np.mean(a, axis=1)
print(c)
# [30.   55.75 38.25]
# 加权平均数
d = np.average(a, axis=1, weights=[10, 5, 1, 1])
print(d)
# [16.11764706 82.88235294 48.41176471]
# 标准差
e = np.std(a)
print(e)
# 30.774267750111548
# 方差
f = np.var(a)
print(f)
# 947.0555555555557
# 最大值与最小值
print(np.min(a)) # 1
print(np.max(a)) # 94
# 扁平化后的下标
print(np.argmin(a)) # 9
print(np.argmax(a)) # 5
# 重塑成多维下标
print(np.unravel_index(np.argmin(a), a.shape))
# (2, 1)
# 数组中最大值与最小值差
print(np.ptp(a)) # 93
# 数组中位数(中值)
print(np.median(a)) # 33.5
# 计算梯度
print(np.gradient(a))
"""
[array([[ 80. ,  78. , -35. , -20. ],
       [ 32. ,  -7.5, -12. ,   4. ],
       [-16. , -93. ,  11. ,  28. ]]), 
array([[  6. ,  27.5,   6.5, -36. ],
       [  4. , -30. , -42.5, -21. ],
       [-73. , -16.5,  18. ,  -4. ]])]
"""
相关文章
|
9天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
33 0
|
3天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
12 2
|
1天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
69 0
|
3月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
54 0
|
9天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
19 3
|
10天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
28 2
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
44 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
下一篇
无影云桌面