三种能有效融合文本和图像信息的方法——特征拼接、跨模态注意、条件批量归一化

简介: 三种能有效融合文本和图像信息的方法——特征拼接、跨模态注意、条件批量归一化

当前T2I模型的一大限制就是如何有效地融合文本和图像信息?

目前常用的有特征拼接(features concatenation)、跨模态注意(cross-modal attention)和条件批量归一化(CBN,Condition Batch Normalization)

一、特征拼接

特征拼接就是简单的将文本模态进行简单线性变换,转换成图像模态需要的特征向量尺寸,然后将文本特征向量与图像特征向量进行拼接,在StackGANStackGAN++中用到过。

这种方法其实既没有充分利用到文本信息,也没有有效实现文本图像的信息融合。

二、跨模态注意

随着注意力机制的发展,跨模态注意力可以为图像的每个子区域计算一个单词的上下文向量,其首先在AttnGAN中得到应用,AttnGAN在单词的水平上实现了单词与图片中的某个子区域的映射,自动选择字级条件以生成图像的不同子区域。

在生成图像时,匹配图像子区域和最相关的单词,对输入图片的每一部分,匹配最相关的单词向量来约束其生成,增加图像的细粒度细节。如在AttnGAN中使用如下公式计算跨模态注意力:

image.png

其中image.png

而β(i,j)表示    第i个单词对生成图像的第j个区域的重要程度。

然而,随着图像尺寸的增大,计算成本迅速增加。此外,自然语言描述采用高级语义,而图像的一个子区域相对较低。因此,它无法很好地探索高级语义来控制图像生成过程,尤其是对于具有多个对象的复杂图像效果很差。

三、条件批量归一化(CBN)

全称为:Condition Batch Normalization,是SD-GAN首先在文本生成图像中进行应用的,将其看作是在一般的特征图上的缩放和移位操作的一种特例,它的表示形式如下所示:

image.png

原理是:利用自然语言描述中的语言线索(linguistic cues)来调节条件批处理归一化,主要目的是增强生成网络特征图的视觉语义嵌入。它使语言嵌入能够通过上下缩放、否定或关闭等方式操纵视觉特征图,其可以从输入中获取到语句级和词级两个层次上的语言线索。

DF-GAN中,其采用了一系列叠加仿射变换按通道缩放和移动图像特征,也可以认为是一种条件批量归一化。

SSA-GAN中,其将CBN进行了进一步的发展,作者提出的语义空间条件批量规范化(S-SCBN)将掩码预测器输出的掩码图添加到SCBN中作为空间条件,

相关文章
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
500 2
|
移动开发 文字识别 算法
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
本文简要介绍Pattern Recognition 2019论文“SegLink++: Detecting Dense and Arbitrary-shaped Scene Text by Instance-aware Component Grouping”的主要工作。该论文提出一种对文字实例敏感的自下而上的文字检测方法,解决了自然场景中密集文本和不规则文本的检测问题。
1947 0
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
|
1月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
184 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
1月前
|
数据采集
遥感语义分割数据集中的切图策略
该脚本用于遥感图像的切图处理,支持大尺寸图像按指定大小和步长切割为多个小图,适用于语义分割任务的数据预处理。通过设置剪裁尺寸(cs)和步长(ss),可灵活调整输出图像的数量和大小。此外,脚本还支持标签图像的转换,便于后续模型训练使用。
15 0
|
6月前
|
计算机视觉
论文介绍:像素级分类并非语义分割的唯一选择
【5月更文挑战第24天】论文《像素级分类并非语义分割的唯一选择》提出了MaskFormer模型,该模型通过掩模分类简化语义与实例级分割任务,无需修改模型结构、损失函数或训练过程。在ADE20K和COCO数据集上取得优异性能,显示处理大量类别时的优势。MaskFormer结合像素级、Transformer和分割模块,提高效率和泛化能力。掩模分类方法对比边界框匹配更具效率,且MaskFormer的掩模头设计降低计算成本。该方法为语义分割提供新思路,但实际应用与小物体处理仍有待检验。[链接](https://arxiv.org/abs/2107.06278)
52 3
|
6月前
|
测试技术
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
[Vript](https://github.com/mutonix/Vript) 是一个大规模的细粒度视频文本数据集,包含12K个高分辨率视频和400k+片段,以视频脚本形式进行密集注释,每个场景平均有145个单词的标题。除了视觉信息,还转录了画外音,提供额外背景。新发布的Vript-Bench基准包括三个挑战性任务:Vript-CAP(详细视频描述)、Vript-RR(视频推理)和Vript-ERO(事件时序推理),旨在推动视频理解的发展。
132 1
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
|
6月前
|
机器学习/深度学习 算法 大数据
提取图像特征方法总结 是那种很传统的方法~
提取图像特征方法总结 是那种很传统的方法~
250 4
|
6月前
|
人工智能 文字识别 算法
垂直领域大模型——文档图像大模型的思考与探索
12月1日,2023中国图象图形学学会青年科学家会议在广州召开。超1400名研究人员齐聚一堂,进行学术交流与研讨,共同探索促进图象图形领域“产学研”交流合作。
|
6月前
|
自然语言处理
将向量提取器用于平行语料对齐的一个小示例
将向量提取器用于平行语料对齐的一个小示例
41 0
视觉智能平台中,如果你想批量清空人脸样本库里的样本数据
视觉智能平台中,如果你想批量清空人脸样本库里的样本数据
156 5