暂时未有相关云产品技术能力~
公众号 Deephub-IMBA
循环编码是深度学习中处理周期性数据的一种技术,常用于时间序列预测。它将周期性特征(如小时、日、月)转换为网络可理解的形式,帮助模型识别周期性变化。传统的one-hot编码将时间特征转换为分类特征,而循环编码利用正弦和余弦转换,保持时间顺序信息。通过将时间戳转换为弧度并应用sin和cos,每个原始特征只映射到两个新特征,减少了特征数量。这种方法在神经网络中有效,但在树模型中可能需谨慎使用。
时间序列分析在数据科学和机器学习中广泛应用于预测,如金融、能源消耗和销售。随着技术发展,除了传统统计模型,机器学习(如树模型)和深度学习(如LSTM、CNN和Transformer)也被应用。探索性数据分析(EDA)是预处理关键步骤,它通过Pandas、Seaborn和Statsmodel等Python库进行。本文展示了时间序列分析模板,包括描述性统计、时间图、季节图、箱形图、时间序列分解和滞后分析。使用Kaggle的小时能耗数据集,展示了如何通过这些方法揭示数据模式、季节性和趋势,为特征工程提供见解。
本文介绍了机器学习中的正则化技术,包括L1、L2和Elastic Net,用于防止过拟合。L1正则化产生稀疏模型,适合特征选择;L2正则化使参数接近零但不为零,减少过拟合。Elastic Net结合L1和L2优点,适用于特征相关情况。在Python的sklearn库中,可使用Lasso、Ridge和ElasticNet类实现这些正则化。此外,文中提供PyTorch代码示例,展示了如何在多层感知机上应用L1、L2和Elastic Net正则化。
该文探讨了时间序列预测中模型架构的选择,指出尽管MLP和Transformer模型常见,但CNN在预测领域的应用较少。BiTCN是一种利用两个时间卷积网络来编码历史和未来协变量的模型,提出于《Parameter-efficient deep probabilistic forecasting》(2023年3月)。它包含多个由扩张卷积、GELU激活函数、dropout和全连接层组成的临时块,有效地处理序列数据。实验表明,BiTCN在具有外生特征的预测任务中表现优于N-HiTS和PatchTST。BiTCN的效率和性能展示了CNN在时间序列预测中的潜力。
本文介绍了如何结合文本嵌入和知识图谱嵌入来提升RAG(检索式生成模型)的性能。文本嵌入利用Word2Vec、GloVe或BERT等预训练模型捕捉单词的语义和上下文,而知识图谱嵌入则表示实体和关系,以便更好地理解结构化信息。通过结合这两种嵌入,RAG模型能更全面地理解输入文本和知识,从而提高答案检索和生成的准确性。文章通过代码示例展示了如何生成和整合这两种嵌入,强调了它们在增强模型对模糊性和可变性处理能力上的作用。
在使用LSTM进行时间序列预测时,常见错误是混淆回归和预测问题。LSTM需将时间序列转化为回归问题,通常使用窗口或多步方法。然而,窗口方法中,模型在预测未来值时依赖已知的未来值,导致误差累积。为解决此问题,应采用迭代预测和替换输入值的方法,或者在多步骤方法中选择合适的样本数量和训练大小以保持时间结构。编码器/解码器模型能更好地处理时间数据。
Kolmogorov-Arnold Networks (KANs) 是一种新型神经网络架构,挑战了多层感知器(mlp)的基础,通过在权重而非节点上使用可学习的激活函数(如b样条),提高了准确性和可解释性。KANs利用Kolmogorov-Arnold表示定理,将复杂函数分解为简单函数的组合,简化了神经网络的近似过程。与mlp相比,KAN在参数量较少的情况下能达到类似或更好的性能,并能直观地可视化,增强了模型的可解释性。尽管仍需更多研究验证其优势,KAN为深度学习领域带来了新的思路。
这篇文章介绍了使用NumPy进行图像处理的10个基本步骤,包括读取图像、缩小图像、水平和垂直翻转、旋转、裁剪、分离RGB通道、应用滤镜(如棕褐色调)、灰度化、像素化、二值化以及图像融合。通过这些简单的操作,读者可以更好地掌握NumPy在图像处理中的应用。示例代码展示了如何实现这些效果,并配有图像结果。文章强调这些方法适合初学者,更复杂的图像处理可使用专门的库如OpenCV或Pillow。
这篇文章探讨了贝叶斯推理的发展历史,从帕斯卡尔和费马的早期工作到托马斯·贝叶斯、皮埃尔-西蒙·拉普拉斯和哈罗德·杰弗里斯的贡献。文章指出,贝叶斯分析经历了从使用均匀先验到发展更为客观的方法,如杰弗里斯先验的过程。它讨论了费雪对逆概率的批评,以及贝叶斯方法在处理不确定性问题上的优势。文章还介绍了如何通过匹配覆盖率来评估先验分布的合理性,并通过几个例子展示了不同先验在二项分布和正态分布问题中的应用。最后,文章提出了贝叶斯分析在统计学中的地位,强调了在缺乏先验知识时建立良好先验的重要性,并讨论了主观性和客观性在统计推理中的角色。
通过LLM2Vec,我们可以使用LLM作为文本嵌入模型。但是简单地从llm中提取的嵌入模型往往表现不如常规嵌入模型。
四月的计算机视觉研究涵盖多个子领域,包括扩散模型和视觉语言模型。在扩散模型中,Tango 2通过直接偏好优化改进了文本到音频生成,而Ctrl-Adapter提出了一种有效且通用的框架,用于在图像和视频扩散模型中添加多样控制。视觉语言模型的论文分析了CLIP模型在有限资源下的优化,并探讨了语言引导对低级视觉任务的鲁棒性。图像生成与编辑领域关注3D感知和高质量图像编辑,而视频理解与生成则涉及实时视频转游戏环境和文本引导的剪贴画动画。
本文介绍了如何利用学习曲线识别机器学习模型中的过拟合和欠拟合问题。过拟合发生时,模型过于复杂,对训练数据过拟合,导致测试集表现不佳;欠拟合则是因为模型太简单,无法捕获数据模式,训练和测试集得分均低。学习曲线通过绘制训练和验证损失随训练样本增加的情况来辅助判断。对于过拟合,学习曲线显示训练损失低且随样本增加上升,验证损失降低但不趋近训练损失;欠拟合时,训练和验证损失都高,且两者随着样本增加缓慢改善。通过学习曲线,我们可以调整模型复杂度或采用正则化等方法优化模型泛化能力。
该文介绍了时间序列分析的基本方法,以西伯利亚东南部2023年的气象数据为例,包括2米气温、总降水量、地表净太阳辐射和地表压力。首先,导入相关库如pandas、seaborn和xarray,然后展示时间序列的折线图。接着,通过statmodels库进行时间序列的分解,分析趋势、季节性和噪声。文章还讨论了数据的平稳性,使用ADF检验确认所有变量的平稳性,并通过Box-Cox变换尝试改善非正态分布。此外,还展示了自相关和部分自相关图以揭示序列的结构。这些步骤帮助理解数据特性,为后续建模做准备。
Gradformer,新发布的图Transformer,引入指数衰减掩码和可学习约束,强化自注意力机制,聚焦本地信息并保持全局视野。模型整合归纳偏差,增强图结构建模,且在深层架构中表现稳定。对比14种基线模型,Gradformer在图分类、回归任务中胜出,尤其在NCI1、PROTEINS、MUTAG和CLUSTER数据集上准确率提升明显。此外,它在效率和深层模型处理上也表现出色。尽管依赖MPNN模块和效率优化仍有改进空间,但Gradformer已展现出在图任务的强大潜力。
Phi-3系列是微软推出的一系列高效语言模型,旨在在移动设备上实现高性能。该系列包括 Phi-3-mini(38亿参数)、Phi-3-small 和 Phi-3-medium,它们在保持紧凑的同时,性能媲美GPT-3.5和Mixtral。模型通过精心筛选的数据集和优化训练策略,如数据最优化和阶段训练,实现高效能。 Phi-3-mini可在iPhone 14上运行,占用约1.8GB内存。这些模型在多个基准测试中展现出色性能,推动了AI在移动设备上的应用,增强了用户隐私和体验。虽然目前仅发布技术报告,但源代码和权重即将开放下载。
该文探讨了向量数据库在语义搜索和RAG中的核心作用,并介绍了四个开源向量数据库:Chroma、Milvus、Faiss和Weaviate。这些数据库用于存储高维向量,支持基于相似性的快速搜索,改变了传统的精确匹配方法。文章详细比较了它们的特性,如Chroma的易用性,Milvus的存储效率,Faiss的GPU加速,和Weaviate的图数据模型。选择合适的数据库取决于具体需求,如数据类型、性能和使用场景。
最近发布的三个大型语言模型——Command-R+ (104B参数), Mixtral-8x22b (141B参数的MoE模型), 和 Llama 3 70b (70.6B参数)——需要巨大的内存资源。推理时,Command-R+需193.72GB GPU RAM,Mixtral-8x22B需262.63GB,Llama 370b需131.5GB。激活的内存消耗根据序列长度、批大小等因素变化。文章详细介绍了计算这些模型内存需求的方法,并探讨了如何通过量化、优化器优化和梯度检查点减少内存使用,以适应微调和推理。
本文介绍了5种搭建开源大型语言模型服务的方法,包括使用Anaconda+CPU、Anaconda+GPU、Docker+GPU、Modal和AnyScale。CPU方法适合本地低门槛测试,但速度较慢;GPU方法显著提升速度,Docker简化环境配置,适合大规模部署;Modal提供按需付费的GPU服务,适合试验和部署;而AnyScale则以低门槛和低成本访问开源模型。每种方法都有其优缺点,选择取决于具体需求和资源。
ORPO是一种结合监督微调和偏好对齐的新型微调技术,旨在减少训练大型语言模型所需资源和时间。通过在一个综合训练过程中结合这两种方法,ORPO优化了语言模型的目标,强化了对首选响应的奖励,弱化对不期望回答的惩罚。实验证明ORPO在不同模型和基准上优于其他对齐方法。本文使用Llama 3 8b模型测试ORPO,结果显示即使只微调1000条数据一个epoch,性能也有所提升,证实了ORPO的有效性。完整代码和更多细节可在相关链接中找到。
Barnes-Hut t-SNE是一种针对大规模数据集的高效降维算法,它是t-SNE的变体,用于高维数据可视化。t-SNE通过保持概率分布相似性将数据从高维降至2D或3D。Barnes-Hut算法采用天体物理中的方法,将时间复杂度从O(N²)降低到O(NlogN),通过构建空间索引树和近似远距离交互来加速计算。在scikit-learn中可用,代码示例展示了如何使用该算法进行聚类可视化,成功分离出不同簇并获得高轮廓分数,证明其在大數據集上的有效性。
过去几个月,时间序列基础模型发展迅速,包括TimeGPT、Lag-Llama、Google的TimesFM、Amazon的Chronos和Salesforce的Moirai。本文聚焦于Moirai,这是一个用于时间序列预测的通用模型,尤其强调零样本推理能力。Moirai处理各种数据频率、适应未知协变量并生成概率预测。文章介绍了Moirai的三个关键特性:多尺寸补丁投影层、任意变量注意力和混合分布。此外,还对比了Moirai与Chronos和TimeGPT,发现Moirai在性能上未超越Chronos,后者在数据效率上更优,但不支持多变量预测。
我们开始看4月的新论文了,这是来自北京大学人工智能研究所、北京大学智能科学与技术学院的研究人员发布的Principal Singular Values and Singular Vectors Adaptation(PiSSA)方法。
这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。
本文将介绍大语言模型中使用的不同令牌遮蔽技术,并比较它们的优点,以及使用Pytorch实现以了解它们的底层工作原理。
在本篇文章我们将详细讨论推测解码,这是一种可以将LLM推理速度提高约2 - 3倍而不降低任何准确性的方法。我们还将会介绍推测解码代码实现,并看看它与原始transformer 实现相比到底能快多少。
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
Transformer的基石自2017年后历经变革,2022年RoPE引领NLP新方向,现已被顶级模型如Llama、Llama2等采纳。RoPE融合绝对与相对位置编码优点,解决传统方法的序列长度限制和相对位置表示问题。它通过旋转矩阵对词向量应用角度与位置成正比的旋转,保持向量稳定,保留相对位置信息,适用于长序列处理,提升了模型效率和性能。RoPE的引入开启了Transformer的新篇章,推动了NLP的进展。[[1](https://avoid.overfit.cn/post/9e0d8e7687a94d1ead9aeea65bb2a129)]
微软研究者提出了SiMBA,一种融合Mamba与EinFFT的新架构,用于高效处理图像和时间序列。SiMBA解决了Mamba在大型网络中的不稳定性,结合了卷积、Transformer、频谱方法和状态空间模型的优点。在ImageNet 1K上表现优越,达到84.0%的Top-1准确率,并在多变量长期预测中超越SOTA,降低了MSE和MAE。代码开源,适用于复杂任务的高性能建模。[[论文链接]](https//avoid.overfit.cn/post/c21aa5ca480b47198ee3daefdc7254bb)
MoE架构通过MergeKit实现新突破,允许整合预训练模型创建frankenMoEs,如FrankenMoE,区别于头开始训练的MoEs。MergeKit工具支持选择专家模型,定义正负提示,并生成MoE配置。
本文将使用合成数据集对三种归一化技术进行比较,并在每种配置下分别训练模型。记录训练损失,并比较模型的性能。
2023年,大型语言模型发展迅速,规模更大,性能更强。用户能否定制自己的模型取决于硬件资源。需在功能和成本间找到平衡,可以选择高性能(如40B+参数,适合专业用途,需强大GPU,成本高)或低性能(如7B参数,适合学习和简单应用,GPU成本较低)模型。训练模型可借助HuggingFace的Transformers库,定义数据集并进行训练。训练好的模型可使用Ollama和Open Web UI部署。具备适当GPU是入门基础。
**Quiet-STaR** 是一种增强大型语言模型(LLM)推理能力的方法,它扩展了原有的**STaR** 技术,允许LLM为其生成的文本自动生成推理步骤。通过令牌并行抽样和学习的思想令牌,模型能同时预测单词和相关原理。教师强化指导确保输出的正确性。Quiet-STaR提升LLM在句子预测、复杂问题解答和推理基准测试上的表现,降低困惑度,促进更流畅的生成过程。未来研究将探索视觉和符号理由,以及结合可解释AI以提高模型透明度和定制化。[\[arXiv:2403.09629\]](https://arxiv.org/abs/2403.09629)
本文揭示了8个数据可视化常见错误:误导色彩对比、过多的数据图表、省略基线、误导性标签、错误的可视化方法、不实的因果关系、放大有利数据和滥用3D图形。强调清晰、准确和洞察力的重要性,提醒制作者避免使用过多颜色、一次性展示大量数据、错误图表类型以及展示无关相关性等。正确可视化能有力支持决策,不应牺牲真实性以追求视觉效果。
研究人员探索了提高LLM注意力机制效率的策略,包括FlashAttention(利用SRAM加速)和RingAttention(分布式多设备处理)。新提出的BurstAttention结合两者,优化跨设备计算与通信,减少40%通信开销,使128K长度序列在8×A100 GPU上的训练速度翻倍。论文于3月发布,但实现未公开
GaLore是一种新的优化策略,它通过梯度低秩投影减少VRAM需求,使得大型语言模型(如70亿参数的模型)能在消费级GPU上进行微调,而不减少参数数量。与LoRA相比,GaLore内存效率更高,且性能相当或更优。它在反向传播期间逐层更新参数,降低了计算负荷。虽然GaLore训练时间较长,但它为个人爱好者提供了在有限资源下训练大模型的可能性。相关代码示例和性能对比显示了其优势。
CLIP(Contrastive Language-Image Pre-training)是OpenAI在2021年发布的多模态模型,用于学习文本-图像对的匹配。模型由文本和图像编码器组成,通过对比学习使匹配的输入对在向量空间中靠近,非匹配对远离。预训练后,CLIP被广泛应用于各种任务,如零样本分类和语义搜索。后续研究包括ALIGN、K-LITE、OpenCLIP、MetaCLIP和DFN,它们分别在数据规模、知识增强、性能缩放和数据过滤等方面进行了改进和扩展,促进了多模态AI的发展。
最近时间序列预测预测领域的最新进展受到了各个领域(包括文本、图像和语音)成功开发基础模型的影响,例如文本(如ChatGPT)、文本到图像(如Midjourney)和文本到语音(如Eleven Labs)。这些模型的广泛采用导致了像TimeGPT[1]这样的模型的出现,这些模型利用了类似于它们在文本、图像和语音方面获得成功的方法和架构。
LoRA可以说是针对特定任务高效训练大型语言模型的重大突破。它被广泛应用于许多应用中。在本文中,我们将解释LoRA本身的基本概念,然后介绍一些以不同的方式改进LoRA的功能的变体,包括LoRA+、VeRA、LoRA- fa、LoRA-drop、AdaLoRA、DoRA和Delta-LoRA。
MOMENT团队推出Time-series Pile,一个大型公共时间序列数据集,用于预训练首个开源时间序列模型家族。模型基于Transformer,采用遮蔽预训练技术,适用于预测、分类、异常检测和输入任务。研究发现,随机初始化比使用语言模型权重更有效,且直接预训练的模型表现出色。MOMENT改进了Transformer架构,调整了Layer norm并引入关系位置嵌入。模型在长期预测和异常检测中表现优异,但对于数值预测的效果尚不明朗。论文贡献包括开源方法、数据集创建和资源有限情况下的性能评估框架。
本文介绍了多项式朴素贝叶斯分类器的工作原理,它基于多项分布而非高斯分布来估计类别概率。在文本分类等多类别问题中,该算法尤其适用。文章详细阐述了多项分布的概念,并通过实例解释了如何估计分布参数,包括使用平滑技巧处理未出现的特征。在分类过程中,使用对数空间计算以避免数值下溢。最后,文章通过scikit-learn展示了如何实际操作多项式朴素贝叶斯分类器。
处理单一任务是强化学习的基础,它的目标是在不确定的环境中采取最佳行动,产生相对于任务的最大长期回报。但是在多代理强化学习中,因为存在多个代理,所以代理之间的关系可以是合作的,也可以是对抗,或者两者的混合。多代理的强化学习引入了更多的复杂性,每个代理的状态不仅包括对自身的观察,还包括对其他代理位置及其活动的观察。
大型语言模型的目标是理解和生成与人类语言类似的文本。它们经过大规模的训练,能够对输入的文本进行分析,并生成符合语法和语境的回复。这种模型可以用于各种任务,包括问答系统、对话机器人、文本生成、翻译等。
现在已经是3月中旬了,我们这次推荐一些2月和3月发布的论文。
傅立叶变换是物理学家、数学家、工程师和计算机科学家常用的最有用的工具之一。本篇文章我们将使用Python来实现一个连续函数的傅立叶变换。
将LLM集成到项目所花费的成本主要是我们通过API获取LLM返回结果的成本,而这些成本通常是根据处理的令牌数量计算的。我们如何预估我们的令牌数量呢?Tokeniser包可以有效地计算文本输入中的令牌来估算这些成本。本文将介绍如何使用Tokeniser有效地预测和管理费用。
GitHub CoPilot拥有超过130万付费用户,部署在5万多个组织中,是世界上部署最广泛的人工智能开发工具。使用LLM进行编程辅助工作不仅提高了生产力,而且正在永久性地改变数字原住民开发软件的方式,我也是它的付费用户之一。
Nomic-embed-text是2月份刚发布的,并且是一个完全开源的英文文本嵌入模型,上下文长度为8192。它在处理短文和长文本任务方面都超越了现有的模型,如OpenAI的Ada-002和text-embedding-3-small。该模型有137M个参数在现在可以算是非常小的模型了。
Hawk和Griffin是DeepMind推出的新型循环神经网络(RNNs),2月刚刚发布在arxiv上。Hawk通过使用门控线性递归(gated linear recurrences)超越了Mamba的性能,而Griffin则是一种混合型模型,结合了门控线性递归和局部注意力(local attention),与Llama-2的性能相当,但使用的训练数据明显较少。Griffin在处理比训练时更长的序列时表现出色。这两种模型在硬件效率方面与Transformer相当,但在推理过程中具有更低的延迟和更高的吞吐量。Griffin的规模已扩展到了140亿个(14B)参数。
通过量化可以减少大型语言模型的大小,但是量化是不准确的,因为它在过程中丢失了信息。通常较大的llm可以在精度损失很小的情况下量化到较低的精度,而较小的llm则很难精确量化。
2017年推出《Attention is All You Need》以来,transformers 已经成为自然语言处理(NLP)的最新技术。2021年,《An Image is Worth 16x16 Words》,成功地将transformers 用于计算机视觉任务。从那时起,许多基于transformers的计算机视觉体系结构被提出。
发表了文章
2025-11-08
发表了文章
2025-11-07
发表了文章
2025-11-06
发表了文章
2025-11-05
发表了文章
2025-11-04
发表了文章
2025-11-03
发表了文章
2025-11-02
发表了文章
2025-11-01
发表了文章
2025-10-31
发表了文章
2025-10-30
发表了文章
2025-10-29
发表了文章
2025-10-28
发表了文章
2025-10-27
发表了文章
2025-10-26
发表了文章
2025-10-25
发表了文章
2025-10-24
发表了文章
2025-10-23
发表了文章
2025-10-22
发表了文章
2025-10-21
发表了文章
2025-10-20