大模型服务平台百炼

首页 标签 大模型服务平台百炼
# 大模型服务平台百炼 #
关注
1524内容
|
2月前
| |
# Qwen3-8B 的 TTFT 性能分析:16K 与 32K 输入 Prompt 的推算公式与底层原理详解
Qwen3-8B 是通义实验室推出的 80 亿参数大模型,支持最长 32,768 token 上下文,适用于长文本处理场景。通过 FP8 量化、CUDA Kernel 优化及 RoPE 位置编码技术,提升推理效率与稳定性。模型在 16K 输入下 TTFT 约 150-200ms,32K 输入下约 250-300ms,适用于文档摘要与长对话交互。
|
2月前
| |
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。
|
2月前
| |
# Qwen3-8B 与 ChatGPT-4o Mini 的 TTFT 性能对比与底层原理详解
Qwen3-8B 是通义实验室推出的80亿参数模型,支持32K上下文,采用FP8量化和CUDA优化,提升推理效率;ChatGPT-4o Mini 为OpenAI轻量模型,参数约3.8B,支持128K上下文,通过蒸馏技术实现低延迟。两者在TTFT、长文本处理和部署优化上各有优势,适用于不同应用场景。
本地用阿里云API调用的r1模型,返回的think字段中有奇怪的东西,并且停止思考
这两张图片展示了模型生成内容时可能出现的异常情况,包括图像模糊、结构错误或不符合预期的结果。这可能是由于模型训练数据不足、输入指令不清晰或模型本身存在局限性所致。建议优化输入提示词或调整模型参数以提升输出质量。
|
2月前
| |
选择排序的实现思路
该内容描述了选择排序算法的基本思想:将数组分为“未排序”和“已排序”两部分,每轮从“未排序”中选出最大元素放到“已排序”中,重复此过程直至“未排序”只剩一个元素,排序结束。
|
2月前
| |
HumanOmniV2 比你还懂“社交潜台词”!
如何让AI真正“读懂”人心?本文通过分析相亲对话案例,揭示当前多模态大模型在全局上下文理解和深度逻辑推理上的不足,并介绍全新模型HumanOmniV2的创新机制,如强制性上下文总结和多维度奖励机制,显著提升AI对人类复杂意图的理解能力。
|
2月前
| |
企业级LLMOps落地指南:蜂巢架构×可视化编排实战
本文将基础的单应用扩展成多应用,并实现工作流组件,包括:多应用模块设计、工作流模块设计、LangGraph实现图应用、前端Vue-Flow组件使用、工作流转LLM工具设计思路、关联工作流登技巧。
免费试用