自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
8176内容
SPO:如何优化提示词?大模型最懂如何优化自己!开源自监督提示词优化工具,让AI自主优化提示词
本文介绍由DeepWisdom与香港科技大学联合研发的SPO框架,通过自我监督机制实现大语言模型提示优化,仅需3个样本即可达到SOTA效果,优化成本降低至传统方法的1.1%-5.6%。
|
8月前
|
《解锁自然语言处理黑科技:情感分析的进阶之路》
情感分析是自然语言处理的关键技术,旨在解析文本中的情感态度。它从基于规则的方法发展到机器学习和深度学习,不断提升对复杂语义的理解能力。通过情感分析,企业能实时掌握消费者反馈,政府可洞察民众情绪,为决策提供依据。未来,随着多模态数据融合和模型可解释性的提高,情感分析将在更多领域发挥重要作用,推动信息处理的智能化发展。
PySpur:零代码构建AI工作流!开源可视化拖拽平台,支持多模态与RAG技术
PySpur 是一款开源的轻量级可视化 AI 智能体工作流构建器,支持拖拽式界面,帮助用户快速构建、测试和迭代 AI 工作流,无需编写复杂代码。它支持多模态数据处理、RAG 技术、文件上传、结构化输出等功能,适合非技术背景的用户和开发者快速上手。
预训练语言模型:从BERT到GPT,NLP的新纪元
自然语言处理(NLP)近年来因预训练语言模型(PLMs)的崛起而发生巨大变革。BERT和GPT等模型在学术与工业界取得突破性进展。本文探讨PLMs原理、发展历程及其实际应用,涵盖文本分类、命名实体识别、问答系统等场景,并通过实战案例展示如何使用这些强大的工具解决复杂的NLP任务。
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。
Memobase:开源AI长期记忆系统,让AI真正记住每个用户的秘密武器
Memobase 是一个开源的长期记忆系统,专为生成式 AI 应用设计,通过用户画像和时间感知记忆功能,帮助 AI 记住、理解并适应用户需求。
OneCode 接入 DeepSeek:开启代码开发新纪元
OneCode 接入 DeepSeek,带来自然语言聊天式基础建模、本地代码工程无缝结合、图生代码功能全线升级及 AI 模型代码直接导入等新特性,极大提升开发效率与体验。预计第二季度推出开源版本,进一步推动开发者社区的开放与创新。这些改进使开发更加高效、便捷和智能,助力代码开发进入新纪元。
FlashMLA:DeepSeek最新开源!MLA解码内核让NVIDIA Hopper开启性能狂暴模式,推理速度飙升至3000GB/s
FlashMLA 是 DeepSeek 开源的高效 MLA 解码内核,专为 NVIDIA Hopper 架构 GPU 优化,支持 BF16 精度和页式 KV 缓存,适用于大语言模型推理和自然语言处理任务。
TPO:告别微调!这个AI框架让大模型实时进化:无需训练直接优化,输入问题越用越聪明,输出质量暴涨50%
TPO(Test-Time Prompt Optimization)框架,通过奖励模型和迭代反馈优化大语言模型输出,无需训练即可显著提升性能,支持动态对齐人类偏好,降低优化成本。
ComfyUI-Copilot:阿里把AI助手塞进ComfyUI:一句话生成工作流,自动布线/调参/选模型,小白秒变大神!
ComfyUI-Copilot 是阿里推出的基于 ComfyUI 的 AI 智能助手,支持自然语言交互、智能节点推荐和自动工作流辅助,降低开发门槛并提升效率。
免费试用