关系型数据库

首页 标签 关系型数据库
# 关系型数据库 #
关注
150480内容
|
1天前
| |
来自: 计算巢
WordPress文章推荐插件
这是一款功能强大的WordPress插件,支持在文章底部和侧边栏推荐最新、随机、相关文章及标签。主要特点包括:无需依赖文章标签即可实现相关文章推荐;支持全文索引搜索,提升搜索速度与准确性;可自定义侧边栏HTML模板和样式;兼容默认搜索功能替换,优化搜索体验。插件适合技术新手和进阶用户,提供免费技术支持,但默认列表样式如需改为图文样式需额外收费。注意:全文索引功能需MySQL 5.7及以上版本。
|
2天前
| |
来自: 通义灵码
MySQL索引有哪些类型?
● 普通索引:最基本的索引,没有任何限制。 ● 唯一索引:索引列的值必须唯一,但可以有空值。可以创建组合索引,则列值的组合必须唯一。 ● 主键索引:是特殊的唯一索引,不可以有空值,且表中只存在一个该值。 ● 组合索引:多列值组成一个索引,用于组合搜索,效率高于索引合并。 ● 全文索引:对文本的内容进行分词,进行搜索。
|
2天前
| |
来自: 通义灵码
数据库的行级锁与表锁?
表锁: 不会出现死锁,发生锁的冲突几率高,并发性低。 存储引擎在进行SQL数据读写请求前,会对涉及到的表进行加锁。 其中锁分为共享读锁和独占写锁:读锁会阻塞写,写锁会阻塞读和写。 行级锁: 会出现死锁,发生锁的冲突几率低,并发性高。 InnoDB引擎支持行锁,与Oracle不同,MySQL的行锁是通过索引加载的,也就是说,行锁是加在索引响应的行上的,要是对应的SQL语句没有走索引,则会全表扫描,行锁则无法实现,取而代之的是表锁,此时其它事务无法对当前表进行更新或插入操作。 行级锁注意事项: 行级锁必须有索引才能实现,否则会自动锁全表,那就不是行锁了。 两个事务不能锁同一个索引。 in
|
2天前
| |
来自: 通义灵码
InnoDB与MyISAM实现索引方式的区别?
首先两者都是用的是B+树索引,但二者的实现方式不同。 对于主键索引,InnoDB中叶子节点保存了完整的数据记录,而MyISAM中索引文件与数据文件是分离的,叶子节点上的索引文件仅保存了数据记录的地址. 对于辅助索引,InnoDB中辅助索引会对主键进行存储,查找时,先通过辅助索引的B+树在叶子节点获取对应的主键,然后使用主键在主索引B+树上检索操作,最终得到行数据;MyISAM中要求主索引是唯一的,而辅助索引可以是重复的,主索引与辅助索引没有任何区别,因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址
|
2天前
| |
来自: 通义灵码
什么是左前缀原则
在mysql建立联合索引时会遵循左前缀匹配的原则,即最左优先,在检索数据时从联合索引的最左边开始匹配,组合索引的第一个字段必须出现在查询组句中,这个索引才会被用到 ; 例如 : create index index_age_name_sex on tb_user(age,name,sex); 上述SQL语句对 age,name和sex建一个组合索引index_age_name_sex,实际上这条语句相当于建立了(age) , (age,name) , (age,name,sex)三个索引 .
|
2天前
| |
来自: 通义灵码
什么是聚簇索引及其优缺点?
聚簇索引并不是单独的索引类型,而是一种数据存储方式。 B+树索引分为聚簇索引和非聚簇索引,主键索引就是聚簇索引的一种,非聚簇索引有复合索引、前缀索引、唯一索引。 在innodb存储引擎中,表数据本身就是按B+树组织的一个索引结构,聚簇索引就是按照每张表的主键构造一颗B+树,同时叶子节点中存放的就是整张表的行记录数据,也将聚簇索引的叶子节点成为数据页。 Innodb通过主键聚集数据,如果没有定义主键,innodb会选择非空的唯一索引代替。如果没有这样的索引,innodb会隐式的定义一个主键来作为聚簇索引。 非聚簇索引又称为辅助索引,InnoDB访问数据需要两次查找,辅助索引叶子节点存储的不再是行
|
2天前
| |
来自: 通义灵码
关系型与非关系型数据库的区别
关系型数据库是依据关系模型来创建的数据库,所谓关系模型就是“一对一”、“一对多”、“对多对”等。常见的关系型数据库有Oracle、MySQL、SQL Server等。非关系型数据库主要基于“非关系型模型”,其中非关系型模型有:列模型、键值对模型、文档类模型。比如redis属于键值对模型。 MongoDB属于文档模型 关系型数据库的优点: ● 易于维护:都是使用表结构,格式一致。 ● 使用方便:SQL语言通用,可用于复杂查询。 ● 复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询。 关系型数据库的缺点: ● 读写性能比较差,尤其是海量数据的高效率读写。 ● 固定的表结构,灵活
|
2天前
| |
来自: 通义灵码
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
2天前
| |
来自: 通义灵码
什么情况下索引会失效 ?
MySQL 索引通常是被用于提高 WHERE 条件的数据行匹配时的搜索速度,编写合理化的SQL能够提高SQL的执行效率 1. 不要在列上使用函数和进行运算 2. 不要在列上使用函数,这将导致索引失效而进行全表扫描。 3. 尽量避免使用 != 或 not in或 <> 等否定操作符 4. 尽量避免使用 or 来连接条件 5. 多个单列索引并不是最佳选择,建立组合索引代替多个单列索引, 可以避免回表查询 6. 查询中的某个列有范围查询,则其右边所有列都无法使用索引优化查找 7. 索引不会包含有NULL值的列 8. 当查询条件左右两侧类型不匹配的时候会发生隐式转换,隐式转换带来的影响就是可能导致索引
免费试用