从O(n²)到O(n log n):深度剖析快速排序的内存优化与cache-friendly实现 🌟 Hello,我是摘星!
作为一名深耕算法优化领域多年的技术工程师,我见证了无数次关于排序算法性能讨论的激烈辩论,而快速排序(QuickSort)始终以其卓越的实践表现占据着核心地位。今天我想和大家深入探讨的,不仅仅是快速排序的基础实现,更是如何通过精妙的内存优化策略,将其从理论上的O(n²)最坏时间复杂度,提升到实际应用中稳定的O(n log n)性能表现,并实现真正的cache-friendly设计。在我的实践经验中,许多开发者对快速排序的理解还停留在基础的递归实现层面,而忽略了现代计算机体系结构下内存层次结构对算法性能的深刻影响。本文将系统地分析快速排序在内存访问模式、缓存局部性、尾递归优化等方面的核心技术要点,
基于迁移学习的智能代理在多领域任务中的泛化能力探索
近年来,AI Agent(人工智能代理)已广泛应用于自然语言处理、推荐系统、金融决策、游戏博弈等领域。然而,在面临“跨领域任务”时,AI Agent往往面临数据稀缺、训练代价高、泛化能力差等问题。
而迁移学习(Transfer Learning)的提出,为AI Agent提供了跨领域适配的技术支撑。通过将一个领域中训练好的知识迁移到另一个领域,我们可以显著减少新任务所需数据量,提高模型收敛速度与泛化性能。
本文将从理论、架构设计、代码实战与跨领域实验四方面,探讨迁移学习如何增强AI Agent在多个领域间的通用能力。
Tablestore OpenMemory MCP : 跨会话、跨模型的智能记忆解决方案
本文介绍了Mem0的原理与应用场景,并基于Mem0构建了Tablestore OpenMemory MCP服务,实现个性化旅行规划助理。Mem0是一种为大型语言模型设计的智能记忆层,通过向量数据库持续学习用户交互信息,实现跨会话的个性化记忆管理。该服务提供多种MCP工具,便于集成到各类AI应用中。最后演示了个性化旅行规划应用,并介绍了服务的运行与配置方式。