开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

使用collective模式

使用collective模式,sok+hovorod, 不用分ps-worker角色,将group_embedding设成collective就可以了吗?还是要其它特别的设置?

展开
收起
游客242jp2lsd3dac 2023-04-17 18:54:53 304 0
2 条回答
写回答
取消 提交回答
  • 公众号:网络技术联盟站,InfoQ签约作者,阿里云社区签约作者,华为云 云享专家,BOSS直聘 创作王者,腾讯课堂创作领航员,博客+论坛:https://www.wljslmz.cn,工程师导航:https://www.wljslmz.com

    在使用PAI的collective模式时,您可以将 group_embedding 设置为 collective,来启用分布式训练。但是,为了确保成功运行分布式训练,您还需要注意以下几个方面:

    1. 数据分片:在分布式训练中,数据需要按照一定的方式进行分片(shard),以便每个worker进程都可以访问到不同的数据子集。您需要根据数据量、内存使用等因素确定要分成多少个数据片段,并在训练脚本中设置相关的参数。

    2. 进程数量:在使用 collective 模式时,默认情况下PAI会根据当前节点的CPU数量和实例数配置适当的worker进程数量。您可以根据实际情况调整进程数量,以达到最佳的性能。

    3. hovorod参数:Hovorod是PAI中常用的分布式训练框架,包括了一些系统级别的参数需要进行配置,如backend, local_rank等,这些参数可能会对系统的性能和稳定性产生影响。

    4. 算法选择:在使用 collective 模式时,除了 group_embedding 设置为 collective 以外,还需要根据所选的算法类型进行相关的设置。例如,您选用的算法是Sok,则需要按照官方文档的要求进行配置。

    2023-04-30 10:30:31
    赞同 展开评论 打赏
  • 在使用Horovod进行分布式训练时,可以通过Collective模式来实现数据并行和模型并行。在Collective模式下,每个进程都可以访问完整的模型和数据,并且使用Horovod提供的Allreduce、Allgather等原语进行通信和同步。

    如果你想使用Collective模式,需要在Horovod初始化时将分布式框架设置为Collective,可以通过以下代码实现:

    import horovod.tensorflow as hvd
    # 初始化Horovod
    hvd.init()
    # 将分布式框架设置为Collective
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.visible_device_list = str(hvd.local_rank())
    config = hvd.BroadcastGlobalVariablesHook(0, 1, config)
    # 构建模型
    model = ...
    # 编译模型
    model.compile(optimizer=..., loss=..., metrics=..., hooks=[config])
    # 训练模型
    model.fit(...)
    

    在上述代码中,我们首先初始化Horovod,并将分布式框架设置为Collective模式。然后,我们通过tf.ConfigProto()设置GPU的相关参数,并将其绑定到Collective模式上。接着,我们构建和编译模型,并将Collective模式添加到模型的hooks中。最后,我们使用fit()方法来训练模型。

    总的来说,使用Collective模式需要进行一些特别的设置,但这些设置可以较为方便地实现数据并行和模型并行,提高模型的训练速度和效果。

    2023-04-20 22:53:41
    赞同 展开评论 打赏

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

热门讨论

热门文章

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载