《数据科学:R语言实战》一第2章 序列的数据挖掘2.1 模式

简介:

本节书摘来自异步社区《数据科学:R语言实战》一书中的第2章,第2.1节,作者 【美】Dan Toomey(丹·图米),更多章节内容可以访问云栖社区“异步社区”公众号查看

第2章 序列的数据挖掘

数据科学:R语言实战
数据挖掘技术一般用于检测数据中的序列或模式。本章中,我们将试图使数据遵循一种模式,在此模式中,一个或一系列事件可以通过一致的方式预测另一个数据点。

本章描述了在数据集中查找模式的不同方法:

  • 查找模式
  • 在数据中查找模式
  • 约束条件

我们可以在很多较大的数据集中查找模式。这涵盖了很多区域,比如混合人口的变化、使用手机的频率、高速公路质量衰退、年龄因素造成的事故等。不过我们能明确地感受到,有很多模式和序列正等待我们去发现。

我们可以通过使用R编程中的一些工具找到这些模式。大多数模式因约束条件而在一定程度上受到限制,如序列的有用时间。

2.1 模式

我们来回顾一下确定数据中模式的方法:

模型类别 模型如何工作


47e6bacbe097f978352198ec2f2f6553025ddd2b

2.1.1 Eclat

Eclat算法用于频繁项集的挖掘。这种情况下,我们寻找行为相似的模式,与之相对的是寻找不规则模式(与处理其他数据挖掘的方法类似)。

Algorithm通过数据中的交集来估算同时频繁出现事件候选项(如购物车项目)的支持度。然后通过对频繁候选项进行测试来证实数据集中的模式。

1.用法
在R编程中使用Eclat就是使用arules功能包中的eclat函数。使用Eclat算法的R编程遵循了此处提出的约定:

> eclat(data,
  parameter = NULL,
  control = NULL)

下表对eclat函数的不同参数进行了说明:


c50b539a44e1fee759126bad9cf29c00a6f2df7c

常见的ECParameter如下所示:


b6c5a6827ad3c65d3bda09a84434b703cdf4e318

ECControl常见值如下所示:


902f995b3e2c82b70b062094cba21e9b6cf44c55

调用eclat函数返回数据中出现的频繁项集。

Eclat的实施包括成年人数据集。成年人数据集包括人口统计局数据中约50000行的数据。

2.使用eclat找到成年人行为的相似点
使用下列代码找到成年人行为的相似点:

> library("arules")
> data("Adult")
> dim(Adult)
[1] 48842  115
> summary(Adult)
transactions as itemMatrix in sparse format with
  48842 rows (elements/itemsets/transactions) and
  115 columns (items) and a density of 0.1089939
most frequent items:
capital-loss=None             capital-gain=None
46560                         44807
native-country=United-States race=White
43832                         41762
workclass=Private             (Other)
33906                         401333

element (itemset/transaction) length distribution:
sizes
    9   10     11       12          13
   19   971  2067    15623       30162

   Min. 1st Qu. Median Mean 3rd Qu. Max
  9.00      12.00   13.00   12.53   13.00   13.00

includes extended item information - examples:
              labels variables       levels
1          age=Young       age        Young
2    age=Middle-aged       age  Middle-aged
3          age=Senior      age       Senior

includes extended transaction information - examples:
   transactionID
1               1
2               2
3               3

检查最终结果时,我们会注意到以下细节:

摘要共48842行,115列。
已列出常见项目:白种人。
有很多描述符,如age=Young。
3.查找数据集中的频繁项目
处理数据集时,通过下列代码挖掘出现的频繁项集:

> data("Adult")
> itemsets <- eclat(Adult)
parameter specification:
  tidLists support minlenmaxlen        target  ext
     FALSE     0.1     1   10 frequent itemsets FALSE
algorithmic control:
sparse sort verbose
     7   -2    TRUE
eclat - find frequent item sets with the eclat algorithm
version 2.6 (2004.08.16)    (c) 2002-2004   Christian Borgelt
createitemset ...
set transactions ...[115 item(s), 48842 transaction(s)] done [0.03s].
sorting and recoding items ... [31 item(s)] done [0.00s].
creating bit matrix ... [31 row(s), 48842 column(s)] done [0.02s].
writing ...     [2616 set(s)] done [0.00s].
Creating S4 object ...  done [0.00s].

默认值已发现2616个频繁集合。如果我们寻找前五个集合,将会看到下列输出数据:

> itemsets.sorted <- sort(itemsets)
> itemsets.sorted[1:5]
  items                               support
1 {capital-loss=None}               0.9532779
2 {capital-gain=None}               0.9173867
3 {native-country=United-States}    0.8974243
4 {capital-gain=None,
   capital-loss=None}               0.8706646
5 {race=White}                      0.8550428

以下是对之前输出数据的研究所得:

  • 普查数据中的大多数人未要求资本损失或资本利得(这种财政税收事件并非正常状态)。
  • 大多数人来自美国。
  • 大多数是白种人。

4.集中于最高频率的示例
为了进一步证实数据,我们可以将范围缩减至数据集中出现的最高频率(可以通过调节minlen参数直至处理完一项集合来实现操作):

> itemsets <- eclat(Adult, parameter=list(minlen=9))
> inspect(itemsets)
  items                                  support
1 {age=Middle-aged,
   workclass=Private,
   marital-status=Married-civ-spouse,
   relationship=Husband,
   race=White,
   sex=Male,
   capital-gain=None,
   capital-loss=None,
   native-country=United-States}        0.1056673

按照预期,由一位美国本土且拥有工作的已婚男士填写普查数据表格。

2.1.2 arulesNBMiner

在R中,arulesNBMiner是一个功能包,用于寻找一个集合中两个或两个以上项目的共现。底层模型,即负二项式模型,允许高度偏态次数分配,否则会很难确定最小项集容量。我们在正被挖掘的较大数据集中寻找频繁数据集。当确定使用arulesNBMiner时,您应该看到一些迹象:项目集频率正出现在数据子集合中。

1.用法
将arulesNBMiner作为功能包进行操作,并且必须将此功能包安装于您的R编程环境中。可以通过使用任意数据集来学习如何使用模型/函数中包含的工具,如下所示:

> results <-NBMiner(data, parameter, control = NULL)

下表对NBMiner函数的不同参数进行了说明:


1b4fd3b9cdc74a4125c1d19b70c552b0197c266e

NBMinerParameters的数值如下所示:

NBMinerParameters(data, trim = 0.01, pi = 0.99,
  theta = 0.5, minlen = 1, maxlen = 5, rules = FALSE,
  plot = FALSE, verbose = FALSE, getdata = FALSE)


f1af87f07fc2b8dc94f2f80d27e76c072987ab3c

功能包中的Agrawal数据可以直接使用。注意:Agrawal数据是为集中事务通过特别合成而生成的。代码如下所示:

> data(Agrawal)
> summary(Agrawal.db)

transactions as itemMatrix in sparse format with
 20000 rows (elements/itemsets/transactions) and
 1000 columns (items) and a density of 0.00997795

most frequent items:
item540 item155 item803 item741 item399 (Other)
    1848   1477    1332    1295    1264  192343
element (itemset/transaction) length distribution:
sizes
   1    2    3    4    5    6    7    8    9   10   11   12   13
  15   88  204  413  737 1233 1802 2217 2452 2444 2304 1858 1492
  14   15   16   17   18   19   20   21   22   23   24   25
1072  706  431  233  138   83   46   19   10    1    1    1

    Min.    1st Qu. Median  Mean 3rd Qu.      Max.
   1.000    8.000   10.000  9.978  12.000   25.000

includes extended item information - examples:
   labels
1 item1
2 item2
3 item3

includes extended transaction information - examples:
   transactionID
1       trans1
2       trans2
3       trans3
> summary(Agrawal.pat)
set of 2000 itemsets

most frequent items:
item399 item475 item756 item594 item293 (Other)
     29      29      29      28     26    3960
element (itemset/transaction) length distribution:sizes
  1   2   3   4  5   6
702 733 385 134 34  12
  Min. 1st Qu.  Median  Mean 3rd Qu.    Max.
  1.00   1.00    2.00   2.05    3.00    6.00

summary of quality measures:
pWeightspCorrupts
Min.:2.100e-08     Min. :0.0000
 1st Qu.:1.426e-04  1st Qu. :0.2885
 Median :3.431e-04  Median  :0.5129
 Mean   :5.000e-04  Mean    :0.5061
 3rd Qu.:6.861e-04  3rd Qu. :0.7232
 Max.   :3.898e-03  Max.    :1.0000

includes transaction ID lists: FALSE

以下是对之前输出数据的研究所得:

共20000行,1000列。
所有纵列都用项目399、项目475等命名。
2000个子集在少数例子中具有偏态(如容量1有702、容量2有733等)。
2.为频繁集挖掘Agrawal数据
如果以Agrawal数据为例,可以得到下列输出数据:

> mynbparameters <- NBMinerParameters(Agrawal.db)
> mynbminer <- NBMiner(Agrawal.db, parameter = mynbparameters)
> summary(mynbminer)
set of 3332 itemsets

most frequent items:
item540 item615 item258 item594 item293 (Other)
     69      57      55      50      46   6813

element (itemset/transaction) length distribution:sizes
    1   2    3    4    5
1000  1287  725  259  61

    Min. 1st Qu.    Median  Mean 3rd Qu.    Max.
 1.000     1.000    2.000   2.128 3.000     5.000

summary of quality measures:
    precision
Min.:0.9901
1st Qu. :1.0000
Median  :1.0000
Mean    :0.9997
3rd Qu. :1.0000
Max.    :1.0000

以下是对之前输出数据的研究所得:

项目近乎均匀分布。
项集长度1或2有较大偏斜。

2.1.3 Apriori

Apriori是可以帮助了解关联规则的分类算法。与事务的实施方式相对。这种算法尝试找到数据集中常见的子集合,必须满足最小阈值以便核实关联。

Apriori的支持度和置信度概念十分有趣。Apriori方法会从您的数据集中返回有趣的关联,如当出现Y时,会返回X。支持度是包含X和Y的事务的百分比。置信度是同时包含X和Y的事务的百分比。支持度的默认值为10,置信度的默认值为80。

1.用法

apriori方法的使用规则如下所示:

apriori(data, parameter = NULL, appearance = NULL, control = NULL)

下表对apriori函数的不同参数进行了说明:


1651a9f40b3d2ad854bd0ad86b386e1c3e1aa415

2.评估购物篮中的关联
我们正寻找食品超市中典型购物篮内购买的项目之间的关联。为此,我们将按下列步骤进行操作。

(1)下载下列arules功能包:

> install.packages("arules")
> library(arules)

(2)下载事务,即比利时杂货店数据:

> tr <- read.transactions("http://fimi.ua.ac.be/data/retail.dat",
format="basket")

(3)大概了解数据:

>summary(tr)

transactions as itemMatrix in sparse format with 
 88162 rows (elements/itemsets/transactions) and 
 16470 colunsis (items) and a density of 0.0006257289

most frequent items:
     39     48      38      32      41  (Other)
  50675  42135   15596   15167   14945   770058

element (itemset/transaction) length distribution:
sizes
   1    2    3    4    5    6    7    8    9   10   11   12   13
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866
  14   15   16   17   18   19   20   21   22   23   24   25   26
2620 2310 2115 1874 1645 1469 1290 1205  981  887  819  684  586
  27   28   29   30   31   32   33   34   35   36   37   38   39
 582  472  480  355  310  303  272  234  194  136  153  123  115
  40   41   42   43   44   45   46   47   48   49   50   51   52
 112   76   66   71   60   50   44   37   37   33   22   24   21
  53   54   55   56   57   58   59   60   61   62   63   64   65
  21   10   11   10    9   11    4    9    7    4    5    2    2
  66   67   68   71   73   74   76                      
   5    3    3    1    1    1    1   

   Min. 1st Qu.  Median  Mean  3rd  QU.   Max.
   1.00   4.00     8.00  10.31  14.00     76.00

includes extended item information - examples: 
   labels 
1       0
2       1
3       10

以下是对之前输出数据的研究所得:

共88162个购物篮,对应16470个项目。
成对项目很受欢迎(项目39有50675个)。
(4)一起看一下最频繁的项目:

> itemFrequencyPlot(tr, support=0.1)


2963492d30d2dace53fdf2ca505485c3dd51b45b

我们可以再次看到少数频率比平常频率更高的项目。

(5)现在,为合适的关联构建一些规则:

> rules <- apriori(tr, parameter=list(supp=0.5,conf=0.5))

parameter specification:
confidenceminvalsmaxaremavaloriginalSupport support minlen
         0.5    0.1   1 none FALSE            TRUE     0.5   1
maxlen target ext
    10  rules FALSE

algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE FALSE TRUE     2    TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)   (c) 1996-2004   Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[16470 item(s), 88162 transaction(s)] done
[0.13s].
sorting and recoding items ... [1 item(s)] done [0.01s].
creating transaction tree ... done [0.02s].
checking subsets of size 1 done [0.00s].
writing ... [1 rule(s)] done [0.00s].
creating S4 object   ... done [0.01s].
(6)然后用一条规则作为结束。规则摘要如下:

> summary(rules)

set of 1 rules

rule length distribution (lhs + rhs):sizes
1
1
   Min. 1st Qu. Median Mean 3rd Qu. Max.
     1       1       1    1      1    1

summary of quality measures:
   support          confidence     lift
Min.:0.5748     Min. :  0.5748 Min. :1
1st Qu. :0.5748   1st Qu. :0.5748   1st Qu. :1
Median  :0.5748   Median  :0.5748   Median  :1
Mean    :0.5748   Mean    :0.5748   Mean    :1
3rd Qu. :0.5748   3rd Qu. :0.5748   3rd Qu. :l
Max.    :0.5748   Max.    :0.5748   Max.    :1

mining info:
datantransactions support confidence
   tr        88162      0.5         0.5

规则的支持度有力,置信度较低。

(7)具体规则:

>inspect(rules)
lhsrhs support confidence lift
1{} => {39} 0.5747941   0.5747941   1

正如我们猜想的那样,大多数人将项目39放入购物篮。

(8)我们可以寻找更多与规则相关的信息,以便全面了解其产生的影响。

>interestMeasure(rules, c("support", "chiSquare", "confidence", 
"conviction", "cosine", "leverage", "lift", "oddsRatio"), tr)
           sapply(method, FUN = function(m) interestMeasure(x, m, 
transactions, reuse, ...)) 
support                 0.5747941
chiSquareNaN
confidence              0.5747941
conviction              1.0000000
cosine                  0.7581518
leverage                0.0000000
lift                    1.0000000
oddsRatioNaN

一条派生规则将这些措施的置信度展现得非常全面。

2.1.4 用TraMineR确定序列

TraMineR功能包用于挖掘序列,并将其可视化,其思想是发现序列。可以将序列分布、序列频率及湍流等绘图的图解设备构建到功能包中。此外,还有一些自然出现的项目,其中的数据有重复的序列,如在一些社会科学场地,数据会自然地循环项目。

通过此文件,我将带您大概了解TraMineR,以便生成一系列用于发现序列的工具。在挖掘操作中选择何种工具取决于您自己。

您可以同时使用TraMineR功能包及一对内置数据集:


3de6e2efe2256e63b54e36999298a25a4189eac3

1.用法
seqdef函数用于确定数据中出现的序列:

seqdef(data, var=NULL, informat="STS", stsep=NULL,
  alphabet=NULL, states=NULL, id=NULL, weights=NULL,
  start=1, left=NA, right="DEL", gaps=NA,
  missing=NA, void="%", nr="*", cnames=NULL,
  xtstep=1, cpal=NULL, missing.color="darkgrey",
  labels=NULL, ...)

下表对seqdef函数的不同参数进行了说明:


2163b7c98abd358d6195cfc3c98d72700b405834

2.确定训练和职业中的序列
在这一示例中,我们将看到人们生活中从训练到工作的进程中时间的序列。我们期望看到从失业未经训练的状态至经过训练并最终成为全职员工的进程。        

TraMineR功能包中的一些函数有助于序列分析。我们使用seqdef来创建数据对象,以便其他函数也可以使用。可以用其他方法设置或保留参数,如下所示:

seqdef(data, var=NULL, informat="STS", stsep=NULL,
    alphabet=NULL, states=NULL, id=NULL, weights=NULL, start=1,
    left=NA, right="DEL", gaps=NA, missing=NA, void="%", nr="*",
    cnames=NULL, xtstep=1, cpal=NULL, missing.color="darkgrey",
    labels=NULL, ...)

大多数参数可以在默认值下使用。

如您所见,seq数据对象是plot函数的第一个参数。您可以用实际想用的plot函数(如下面编码中所用的seqiplot)代替XXX。

seqXXXplot(seqdata, group=NULL, type="i", title=NULL,
  cpal=NULL, missing.color=NULL,
  ylab=NULL, yaxis=TRUE, axes="all", xtlab=NULL, cex.plot=1,
  withlegend="auto", ltext=NULL, cex.legend=1,
  use.layout=(!is.null(group) | withlegend!=FALSE),
  legend.prop=NA, rows=NA, cols=NA, ...)

多数参数是您在plot中所需的标准图像的强化形式,如ylab是y轴的标记。

首先,我们必须用下列编码将TraMineR加载入您的环境中。

> install.packages("TraMineR")
> library ("TraMineR")

我们将使用TraMineR功能包中内置的mvad数据集。mvad数据集追踪了712个个体在20世纪90年代自训练至工作的进程。我们可以按下列形式使用mvad数据集。

> data(mvad)

数据摘要如下所示:

> summary(mvad)

     id            weight         male           catholic      Belfast
Min.: 1.0    Min.:0.1300    no :342      no :368       no :624
1st Qu. :178.8  1st Qu. :0.4500     yes:370    yes:344      yes: 88
Median  :356.5  Median  :0.6900
Mean    :356.5  Mean    :0.9994
3rd Qu. :534.2  3rd Qu. :1.0700
Max.    :712.0  Max.    :4.4600

N.EasternSouthern S.Eastern Western Grammar funemp
no :503   no :497   no :629   no :595  no :583  no :595
yes:209   yes:215   yes: 83   yes:117  yes:129  yes:117

gcse5eqfmprlivboth            Jul.93
no :452    no :537  no :261   school     :135
yes:260    yes:175  yes:451   FE         : 97
                              employment :173
                              training   :122
                              joblessness:185
                              HE         : 0

我们可以查看标准标识符来了解体重、性别、宗教等信息。

截取序列数据(我们正通过86使用17列,因为这适用于人们在数据调查不同点的状态),并将数据的这部分应用于序列确定函数,如下所示:

> myseq <- seqdef(mvad, 17:86)

[>] 6 distinct states appear in the data:
    1 = employment
    2 = FE
    3 = HE
    4 = joblessness
    5 = school
    6 = training
[>] state coding:
      [alphabet]    [label]    [long label]
1 employmentemploymentemployment
2 FEFEFE
3 HEHEHE
4 joblessnessjoblessnessjoblessness
5 schoolschoolschool
6 trainingtrainingtraining
 [>] 712 sequences in the data set
 [>] min/max sequence length: 70/70

这样看来是正确的,我们可以参照相关状态(失业、上学、训练及工作)来获取所需的行序列数据。

我们可以使用一些内置图表来将已确定的序列可视化。序列如下所示。

  • seqiplot:指数图表。
  • seqfplot:频率图表。
  • seqdplot:分布图表。

以指数图表为例:

> seqiplot(myseq)


ccf96df03495ab2bbadba8d109115c29f23024d9

通过参照个人不同状态间界定的转换期,您会发现连续几个月都有训练。您应进行核实,以便数据显示的信息与您对序列数据的理解相一致。

现在,以频率图表为例:

> seqfplot(myseq)


daeeb54f64115bf0e425ffa08d41b2ed965dd17a

现在我们来看序列在不同时间的频率。多次观看后我们会看到同一序列的人群集,如经过一段时间的训练后会有工作。

现在,以分布图表为例:

> seqdplot(myseq)


bc845e868012600faf2914a49a228e9c65c09f65

我们来看看序列状态在不同时期的分布情况。通常情况下,人们在上学或训练后开始工作。明白了吧!

通过以下指令我们可以看到序列的熵:

> seqHtplot(myseq)


fe503f9cb6bfb87096f93e86bd620f9bd883509f

熵在不同时期的变化特点:明显降低后会出现细微的上升。这与不同人群会在最初做出不同选择的情况一致(很多状态),如上学或训练,然后进行工作,成为劳动力(一种状态)。

有一个有趣的想法为数据湍流。湍流传达出一个信息,即从数据中可见的某个特定事例可以推导出多少不同的后续序列。我们可以用seqST函数将湍流可视化。seqST函数将序列数据作为参数,并返还湍流数据。让我们继续以示例进行说明:

> myturbulence <- seqSt(myseq)
> hist(myturbulence)


f4d7888b8f04fe9e89df17e12b9cb84d4969d202

我们可以看到带有长尾数的近乎标准化分布。大多数状态分为少量后续状态以及少数状态或多或少的异常值。

2.1.5 序列相似点

TraMineR功能包也可以确定序列的度量,如不同序列间的相异点。

  • 最长公共前缀(LCP):我们可以通过比较相同的最长序列前缀来确定相似点。
  • 最长公共序列(LCS):我们也可以通过查看两个序列之间的相同部分,根据其内部的最长序列来确定相似点。
  • 最佳匹配(OM)距离:指生成一个不同序列的最佳编辑距离,在此距离下,插入及删除的成本最小。

使用TraMineR中的seqdist函数可以实现所有这些功能。

1.序列度量
我们可以用seqdist计算LCP。

2.用法
seqdist函数使用规则如下:

seqdist(seqdata, method, refseq=NULL, norm=FALSE,
   indel=1, sm=NA, with.missing=FALSE, full.matrix=TRUE)

下表对seqdist函数的不同参数进行了说明:


7bfc5d98712d3b93fe464238664178ce90c5bc8b

3.示例
seqdist函数用法示例如下:

(1)使用被构建到功能包的famform序列:

> data(famform)

(2)界定可用的序列对象:

> seq <- seqdef(famform)
[>] found missing values ('NA') in sequence data
[>] preparing 5 sequences
[>] coding void elements with '%' and missing values with '*'
[>] 5 distinct states appear in the data:
    1 = M
    2 = MC
    3 = S
    4 = SC
    5 = U
[>] state coding:
       [alphabet]   [label]   [long label]
1 MMM
2 MCMCMC
3 SSS
4 SCSCSC
5 UUU
  [>] 5 sequences in the data set
  [>] min/max sequence length: 2/5
> seq
    Sequence
[1] S-U
[2] S-U-M
[3] S-U-M-MC
[4] S-U-M-MC-SC
[5] U-M-MC

(3)确定使用序列3和序列4的LCP:

> seqLLCP(seq[3,],seq[4,])

[1] 4

我们可以得到四个前置匹配(S-U-M-MC与S-U-M-MC-SC相比)。

(4)我们可以直接计算LCS度量:

> seqLLCS(seq[1,],seq[2,])
[1] 2

我们可以在2中找到常用序列。

(5)也可以直接确定OMD:

[>] cost <- seqsubm(seq, method-"CONSTANT". Cval=2)
 [>] creating 5x5 substitution-cost matrix using 2 as constant
value 
> cost
     M->  MC->  S->  SC->  U->
M->    0     2    2     2    2
MC->   2     0    2     2    2
S->    2     2    0     2    2
SC->   2     2    2     0    2
U->    2     2    2     2    0

OMD仅为2(仅用较小序列来诠释概念)。

相关文章
|
7月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
7月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
7月前
【R语言实战】——fGARCH包在金融时序上的模拟应用
【R语言实战】——fGARCH包在金融时序上的模拟应用
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
机器学习/深度学习 数据采集 算法
数据科学基础:数据挖掘与分析的技术探讨
【6月更文挑战第15天】本文探讨数据科学中的数据挖掘与分析技术,阐述其基础理论,包括数据预处理、探索和模型建立,并介绍统计分析、机器学习、深度学习等方法。面对数据质量、算法选择等挑战,数据挖掘在智能决策、个性化服务、预测等方面展现广阔前景,将在跨领域融合中发挥更大作用,同时也需关注隐私安全与技术伦理。
|
7月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
7月前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战
|
7月前
|
数据可视化 算法
【R语言实战】——kNN和朴素贝叶斯方法实战
【R语言实战】——kNN和朴素贝叶斯方法实战

热门文章

最新文章