Java JUC CopyOnWriteArrayList 解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: CopyOnWriteArrayList 原理解析

CopyOnWriteArrayList 原理解析


介绍

在 Java 并发包中的并发 List 只有 CopyOnWriteArrayList,CopyOnWriteArrayList 是一个线程安全的 ArrayList,对其进行的修改操作都是在底层的一个复制的数组(快照)上进行的,也就是使用了写时复制策略。

image.png

在 CopyOnWriteArrayList 的类图中,每个 CopyOnWriteArrayList 对象里面有一个 array 数组用来存放具体的元素ReentrantLock独占锁来保证同时只有一个线程对 array 进行修改。


如果让我们自己做一个写时复制的线程安全的 list 我们会怎么做,有哪些点需要考虑?


  • 何时初始化 list,初始化的 list 元素个数为多少,list 是有限大小吗?
  • 如何保证线程安全,比如多个线程进行读写时如何保证是线程安全的?
  • 如何保证使用迭代器遍历 list 时的数据一致性?


下面我们看一下 CopyOnWriteArrayList 是如何实现的。


主要方法解析

初始化

在无参构造函数中,默认创建大小为 0 的 Object 数组作为初始值。

public CopyOnWriteArrayList() {
        setArray(new Object[0]);
}

有参构造函数:

//传入的toCopyIn的副本
public CopyOnWriteArrayList(E[] toCopyIn) {
    setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));
}
//入参为集合,复制到list中
public CopyOnWriteArrayList(Collection<? extends E> c) {
        Object[] elements;
        if (c.getClass() == CopyOnWriteArrayList.class)
            elements = ((CopyOnWriteArrayList<?>)c).getArray();
        else {
            elements = c.toArray();
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elements.getClass() != Object[].class)
                elements = Arrays.copyOf(elements, elements.length, Object[].class);
        }
        setArray(elements);
}

添加元素


CopyOnWriteArrayList 中用来添加元素的函数有:


  • add(E e)
  • add(int index,E e)
  • addIfAbsent(E e)
  • addAllAbsent(Collection<? extents E> c)等


这些函数原理类似,我们以 add(E e)为例来解析。

public boolean add(E e) {
        // 获取独占锁
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            // 获取array
            Object[] elements = getArray();
            int len = elements.length;
            //复制array到新数组并且添加新元素到新数组
            Object[] newElements = Arrays.copyOf(elements, len + 1);
            newElements[len] = e;
            // 使用新数组替换旧的数组
            setArray(newElements);
            return true;
        } finally {
            //释放独占锁
            lock.unlock();
        }
}

在上述代码中,首先会获取独占锁,如果有多个线程同时调用 add 方法则只有一个线程能获取到该锁,其它线程会被阻塞直到锁被释放。


之后使用新数组替换原数组,并释放锁,需要注意的就是在添加元素时,首先复制了一个快照,然后在快照上进行添加,而不是直接在原来数组上进行


获取指定位置元素

使用 get(int index)方法获取下标为 index 的元素,如果元素不存在则抛出 IndexOutOfBoundsException 异常。

public E get(int index) {
        return get(getArray(), index);
}
final Object[] getArray() {
    return array;
}
private E get(Object[] a, int index) {
    return (E) a[index];
}

上述代码中,当某个线程调用 get 方法获取指定位置元素时,首先获取 array 数组,然后通过下标获取指定位置元素,这是两步操作,但是在整个过程中没有进行加锁同步


假设 array 里面有元素 1,2,3。

1654825277953.png

由于第一步获取 array 和第二步根据下标访问指定位置元素没有枷锁,这就可能导致线程 x 在执行第一步后第二步前,另外一个线程 y 进行了 remove 操作,假设删除1,remove 操作首先会获取独占锁,进行写时复制,也就是复制一份当前 array 数组然后在复制后的数组里删除线程 x 通过 get 方法访问的元素1,之后让 array 指向新的数组。


而这时候 array 之前指向的数组的引用计数为 1 而不是 0,因为线程 x 还在使用它,这时线程 x 开始执行第二步,操作的数组是线程 y 删除元素之前的数组。

1654825296834.png

总结:虽然线程 y 已经删除了 index 处的元素,但是线程 x 的第二步还是会返回 index 处的元素,这其实就是写时复制策略产生的弱一致性问题


修改指定元素

使用 set(int index,E element)修改 list 中指定元素的值,如果指定元素的元素不存在则抛出 IndexOutOfBoundsException 异常。

public E set(int index, E element) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        Object[] elements = getArray();
        E oldValue = get(elements, index);
        if (oldValue != element) {
            int len = elements.length;
            Object[] newElements = Arrays.copyOf(elements, len);
            newElements[index] = element;
            setArray(newElements);
        } else {
            // Not quite a no-op; ensures volatile write semantics
            setArray(elements);
        }
        return oldValue;
    } finally {
        lock.unlock();
    }
}

该方法也是先获取独占锁,随后获取当前数组,并调用 get 方法后去指定位置元素,如果指定位置元素不等于新值则创建新数组并复制元素到新的数组中。


如果指定位置元素和新值一样,则为了保证 volatile 语义,还是需要重新设置 array,虽然 array 内容并没有变化。


该目的就是刷新一下缓存,通知其他线程,也就是所谓的操作结果可见。


删除元素

删除 list 中指定元素,可以使用如下方法。


  • E remove(int index)
  • boolean remove(Object o)
  • Boolean remove(Object o,Object[] snapshot,int index)等


原理大致类似,这里讲解 remove(int index)方法。

public E remove(int index) {
        //获取独占锁
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            Object[] elements = getArray();
            int len = elements.length;
            E oldValue = get(elements, index);
            int numMoved = len - index - 1;
            //如果要删除的是最后一个元素
            if (numMoved == 0)
                setArray(Arrays.copyOf(elements, len - 1));
            else {
                //分两次复制删除后剩余的元素到新数组
                Object[] newElements = new Object[len - 1];
                System.arraycopy(elements, 0, newElements, 0, index);
                System.arraycopy(elements, index + 1, newElements, index,numMoved);
                setArray(newElements);
            }
            return oldValue;
        } finally {
            lock.unlock();
        }
}

首先获取独占锁以保证删除数据期间其他线程不能对 array 进行修改,然后获取数组中要被删除的元素,并把剩余的元素复制到新数组,之后使用新数组替换原来的数组,最后在返回前释放锁。


迭代器

下面来看 CopyOnWriteArrayList 中迭代器的弱一致性是怎么回事,所谓弱一致性是指返回迭代器后,其他线程对 list 的增删改对迭代器是不可见的,下面看看这是如何做到的。

public Iterator<E> iterator() {
    return new COWIterator<E>(getArray(), 0);
}
static final class COWIterator<E> implements ListIterator<E> {
    //array的快照
    private final Object[] snapshot;
    //数组下标
    private int cursor;
    private COWIterator(Object[] elements, int initialCursor) {
        cursor = initialCursor;
        snapshot = elements;
    }
    //是否遍历结束
    public boolean hasNext() {
        return cursor < snapshot.length;
    }
    //获取元素
    public E next() {
        if (! hasNext())
            throw new NoSuchElementException();
        return (E) snapshot[cursor++];
    }
}

当调用 iterator 方法获取迭代器时实际上会返回一个COWIterator对象,COWIterator 对象的 snapshot 变量保存了当前 list 的内容,cursor 是遍历 list 时数据的下标。


为什么说 snapshot 是 list 的快照呢?明明是指针传递的引用,而不是副本。


如果在该线程使用返回的迭代器遍历元素的过程中,其他线程没有对 list 进行增删改,那么 snapshot 本身就是 list 的 array,因为它们是引用关系。


但是如果在遍历期间其他线程对该 list 进行了增删改,那么 snapshot 就是快照了,因为增删改后 list 里面的数组被新数组替换了,这时候老数组被snapshot引用。这也说明获取迭代器后,使用该迭代器元素时,其他线程对该 list 进行的增删改不可见,因为它们操作的是两个不同的数组,这就是弱一致性


总结

CopyOnWriteArrayList 使用写时复制的策略来保证 list 的一致性,而获取修改写入三步操作并不是原子性的,所以在增删改的过程中都使用了独占锁,来保证在某个时间只有一个线程能对 list 数组进行修改。


另外 CopyOnWriteArrayList 提供了弱一致性的迭代器,从而保证在获取迭代器后,其他线程对 list 的修改是不可见的,迭代器遍历的数组是一个快照。


CopyOnWrite 并发容器用于读多写少的并发场景,缺点:内存占用问题数据一致性问题(只能保证数据的最终一致性,不能保证数据的实时一致性)。

相关文章
|
8天前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
60 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
15天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
13天前
|
Java 数据库连接 Spring
反射-----浅解析(Java)
在java中,我们可以通过反射机制,知道任何一个类的成员变量(成员属性)和成员方法,也可以堆任何一个对象,调用这个对象的任何属性和方法,更进一步我们还可以修改部分信息和。
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
3天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
34 17
|
13天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
15天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
15天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
16天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
42 3

推荐镜像

更多