文章目录
1 序列化概述
2 自定义bean对象实现序列化接口(Writable)
3 序列化案例实操
1 序列化概述
2 自定义bean对象实现序列化接口(Writable)
在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
public FlowBean() { super(); }
(3)重写序列化方法
@Override public void write(DataOutput out) throws IOException { out.writeLong(upFlow); out.writeLong(downFlow); out.writeLong(sumFlow); }
(4)重写反序列化方法
@Override public void readFields(DataInput in) throws IOException { upFlow = in.readLong(); downFlow = in.readLong(); sumFlow = in.readLong(); }
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。
@Override public int compareTo(FlowBean o) { // 倒序排列,从大到小 return this.sumFlow > o.getSumFlow() ? -1 : 1; }
3 序列化案例实操
1.需求
统计每一个手机号耗费的总上行流量、下行流量、总流量
(1)输入数据格式:
7 13560436666 120.196.100.99 1116 954 200 id 手机号码 网络ip 上行流量 下行流量 网络状态码
(2)期望输出数据格式
13560436666 1116 954 2070 手机号码 上行流量 下行流量 总流量
2.需求分析
3.编写MapReduce程序
(1)编写流量统计的Bean对象
package com.kgc.phone; import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; /** * @author:Tokgo J * @date:2019/12/11 * @aim:序列化案例实操 */ //1. 需求 : 统计每一个手机号耗费的总上行流量、下行流量、总流量 //输入数据格式: /*7 13560436666 120.196.100.99 1116 954 200 id 手机号码 网络ip 上行流量 下行流量 网络状态码*/ //期望输出数据格式 /*13560436666 1116 954 2070 手机号码 上行流量 下行流量 总流量*/ // 1 实现writable接口 public class FlowBean implements Writable { private long upFlow; private long downFlow; private long sumFlow; //2 反序列化时,需要反射调用空参构造函数,所以必须有 public FlowBean() { } public FlowBean(long upFlow, long downFlow) { this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = upFlow+downFlow; } //3 写序列化方法 @Override public void write(DataOutput out) throws IOException { out.writeLong(upFlow); out.writeLong(downFlow); out.writeLong(sumFlow); } //4 反序列化方法 //5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致 @Override public void readFields(DataInput in) throws IOException { this.upFlow = in.readLong(); this.downFlow = in.readLong(); this.sumFlow = in.readLong(); } // 6 编写toString方法,方便后续打印到文本 @Override public String toString() { return "FlowBean{" + "upFlow=" + upFlow + ", downFlow=" + downFlow + ", sumFlow=" + sumFlow + '}'; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } }
(2)编写Mapper类
package com.kgc.phone; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; /** * @author:Tokgo J * @date:2019/12/11 * @aim: */ public class FlowCountMapper extends Mapper<LongWritable, Text,Text,FlowBean> { FlowBean v = new FlowBean(); Text k = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 切割字段 String[] fields = line.split("\t"); // 3 封装对象 // 取出手机号码 String phoneNum = fields[1]; // 取出上行流量和下行流量 long upFlow = Long.parseLong(fields[fields.length-3]); long downFlow = Long.parseLong(fields[fields.length-2]); k.set(phoneNum); v.setUpFlow(upFlow); v.setDownFlow(downFlow); // 4 写出 context.write(k,v); } }
(3)编写Reducer类
package com.kgc.phone; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /** * @author:Tokgo J * @date:2019/12/11 * @aim: */ public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> { @Override protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException { long sum_upFlow = 0; long sun_downFlow = 0; // 1 遍历所用bean,将其中的上行流量,下行流量分别累加 for (FlowBean flowBean : values) { sum_upFlow+=flowBean.getUpFlow(); sun_downFlow+=flowBean.getDownFlow(); } // 2 封装对象 FlowBean resultBean = new FlowBean(sum_upFlow,sun_downFlow); // 3 写出 context.write(key,resultBean); } }
(4)编写Driver驱动类
package com.kgc.phone; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * @author:Tokgo J * @date:2019/12/11 * @aim: */ public class FlowsumDriver { public static void main(String[] args) throws Exception { // 1 获取配置信息,或者job对象实例 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 6 指定本程序的jar包所在的本地路径 job.setJarByClass(FlowsumDriver.class); // 2 指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReducer.class); // 3 指定mapper输出数据的kv类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); // 4 指定最终输出的数据的kv类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); // 5 指定job的输入原始文件所在目录 FileInputFormat.addInputPath(job,new Path("hdfs://192.168.56.137:9000/data2/phone.txt")); FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.56.137:9000/my6")); // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 job.waitForCompletion(true); } }