Hadoop: MapReduce2的几个基本示例

简介: 1) WordCount  这个就不多说了,满大街都是,网上有几篇对WordCount的详细分析 http://www.sxt.cn/u/235/blog/5809 http://www.cnblogs.

1) WordCount 

这个就不多说了,满大街都是,网上有几篇对WordCount的详细分析

http://www.sxt.cn/u/235/blog/5809

http://www.cnblogs.com/zhanghuijunjava/archive/2013/04/27/3036549.html

这二篇都写得不错, 特别几张图画得很清晰

 

2) 去重处理(Distinct)

类似于db中的select distinct(x) from table , 去重处理甚至比WordCount还要简单,假如我们要对以下文件的内容做去重处理(注:该文件也是后面几个示例的输入参数)

2
8
8
3
2
3
5
3
0
2
7

基本上啥也不用做,在map阶段,把每一行的值当成key分发下去,然后在reduce阶段回收上来就可以了.

注:里面用到了一个自己写的类HDFSUtil,可以在 hadoop: hdfs API示例 一文中找到.

原理:map阶段完成后,在reduce开始之前,会有一个combine的过程,相同的key值会自动合并,所以自然而然的就去掉了重复.

 1 package yjmyzz.mr;
 2 
 3 import org.apache.hadoop.conf.Configuration;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.NullWritable;
 6 import org.apache.hadoop.io.Text;
 7 import org.apache.hadoop.mapreduce.Job;
 8 import org.apache.hadoop.mapreduce.Mapper;
 9 import org.apache.hadoop.mapreduce.Reducer;
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
11 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
12 import org.apache.hadoop.util.GenericOptionsParser;
13 
14 import yjmyzz.util.HDFSUtil;
15 
16 import java.io.IOException;
17 
18 
19 public class RemoveDup {
20 
21     public static class RemoveDupMapper
22             extends Mapper<Object, Text, Text, NullWritable> {
23 
24         public void map(Object key, Text value, Context context)
25                 throws IOException, InterruptedException {
26             context.write(value, NullWritable.get());
27             //System.out.println("map: key=" + key + ",value=" + value);
28         }
29 
30     }
31 
32     public static class RemoveDupReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
33         public void reduce(Text key, Iterable<NullWritable> values, Context context)
34                 throws IOException, InterruptedException {
35             context.write(key, NullWritable.get());
36             //System.out.println("reduce: key=" + key);
37         }
38     }
39 
40     public static void main(String[] args) throws Exception {
41         Configuration conf = new Configuration();
42         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
43         if (otherArgs.length < 2) {
44             System.err.println("Usage: RemoveDup <in> [<in>...] <out>");
45             System.exit(2);
46         }
47 
48         //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
49         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
50 
51         Job job = Job.getInstance(conf, "RemoveDup");
52         job.setJarByClass(RemoveDup.class);
53         job.setMapperClass(RemoveDupMapper.class);
54         job.setCombinerClass(RemoveDupReducer.class);
55         job.setReducerClass(RemoveDupReducer.class);
56         job.setOutputKeyClass(Text.class);
57         job.setOutputValueClass(NullWritable.class);
58 
59 
60         for (int i = 0; i < otherArgs.length - 1; ++i) {
61             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
62         }
63         FileOutputFormat.setOutputPath(job,
64                 new Path(otherArgs[otherArgs.length - 1]));
65         System.exit(job.waitForCompletion(true) ? 0 : 1);
66     }
67 
68 
69 }
View Code

输出:

0
2
3
5
7
8

 

3) 记录计数(Count)

这个跟WordCount略有不同,类似于Select Count(*) from tables的效果,代码也超级简单,直接拿WordCount改一改就行了

 1 package yjmyzz.mr;
 2 
 3 import org.apache.hadoop.conf.Configuration;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.IntWritable;
 6 import org.apache.hadoop.io.Text;
 7 import org.apache.hadoop.mapreduce.Job;
 8 import org.apache.hadoop.mapreduce.Mapper;
 9 import org.apache.hadoop.mapreduce.Reducer;
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
11 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
12 import org.apache.hadoop.util.GenericOptionsParser;
13 import yjmyzz.util.HDFSUtil;
14 
15 import java.io.IOException;
16 import java.util.StringTokenizer;
17 
18 
19 public class RowCount {
20 
21     public static class RowCountMapper
22             extends Mapper<Object, Text, Text, IntWritable> {
23 
24         private final static IntWritable one = new IntWritable(1);
25         private final  static Text countKey = new Text("count");
26 
27         public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
28                 context.write(countKey, one);
29         }
30     }
31 
32     public static class RowCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
33         private IntWritable result = new IntWritable();
34 
35         public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
36             int sum = 0;
37             for (IntWritable val : values) {
38                 sum += val.get();
39             }
40             result.set(sum);
41             context.write(key, result);
42         }
43     }
44 
45     public static void main(String[] args) throws Exception {
46         Configuration conf = new Configuration();
47         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
48         if (otherArgs.length < 2) {
49             System.err.println("Usage: RowCount <in> [<in>...] <out>");
50             System.exit(2);
51         }
52         //删除输出目录(可选)
53         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
54 
55         Job job = Job.getInstance(conf, "word count");
56         job.setJarByClass(RowCount.class);
57         job.setMapperClass(RowCountMapper.class);
58         job.setCombinerClass(RowCountReducer.class);
59         job.setReducerClass(RowCountReducer.class);
60         job.setOutputKeyClass(Text.class);
61         job.setOutputValueClass(IntWritable.class);
62         for (int i = 0; i < otherArgs.length - 1; ++i) {
63             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
64         }
65         FileOutputFormat.setOutputPath(job,
66                 new Path(otherArgs[otherArgs.length - 1]));
67         System.exit(job.waitForCompletion(true) ? 0 : 1);
68     }
69 
70 
71 }
View Code

输出: count 11

注:如果只想输出一个数字,不需要"count"这个key,可以改进一下:

 1 package yjmyzz.mr;
 2 
 3 import org.apache.hadoop.conf.Configuration;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.LongWritable;
 6 import org.apache.hadoop.io.NullWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Job;
 9 import org.apache.hadoop.mapreduce.Mapper;
10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13 import org.apache.hadoop.util.GenericOptionsParser;
14 import yjmyzz.util.HDFSUtil;
15 
16 import java.io.IOException;
17 
18 
19 public class RowCount2 {
20 
21     public static class RowCount2Mapper
22             extends Mapper<LongWritable, Text, LongWritable, NullWritable> {
23 
24         public long count = 0;
25 
26         public void map(LongWritable key, Text value, Context context)
27                 throws IOException, InterruptedException {
28             count += 1;
29         }
30 
31         protected void cleanup(Context context) throws IOException, InterruptedException {
32             context.write(new LongWritable(count), NullWritable.get());
33         }
34 
35     }
36 
37     public static class RowCount2Reducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> {
38 
39         public long count = 0;
40 
41         public void reduce(LongWritable key, Iterable<NullWritable> values, Context context)
42                 throws IOException, InterruptedException {
43             count += key.get();
44         }
45 
46 
47         protected void cleanup(Context context) throws IOException, InterruptedException {
48             context.write(new LongWritable(count), NullWritable.get());
49         }
50 
51     }
52 
53     public static void main(String[] args) throws Exception {
54         Configuration conf = new Configuration();
55         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
56         if (otherArgs.length < 2) {
57             System.err.println("Usage: FindMax <in> [<in>...] <out>");
58             System.exit(2);
59         }
60 
61         //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
62         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
63 
64         Job job = Job.getInstance(conf, "RowCount2");
65         job.setJarByClass(RowCount2.class);
66         job.setMapperClass(RowCount2Mapper.class);
67         job.setCombinerClass(RowCount2Reducer.class);
68         job.setReducerClass(RowCount2Reducer.class);
69         job.setOutputKeyClass(LongWritable.class);
70         job.setOutputValueClass(NullWritable.class);
71 
72         for (int i = 0; i < otherArgs.length - 1; ++i) {
73             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
74         }
75         FileOutputFormat.setOutputPath(job,
76                 new Path(otherArgs[otherArgs.length - 1]));
77         System.exit(job.waitForCompletion(true) ? 0 : 1);
78     }
79 
80 
81 }
View Code

这样输出结果就只有一个数字11了.

注意: 这里context.write(xxx)只能写在cleanup方法中, 该方法在Mapper和Reducer接口中都有, 在map方法及reduce方法执行完后,会触发cleanup方法. 大家可以尝试下,把context.write(xxx)写在map和reduce方法中试试看,结果会出现多行记录,而不是预期的仅1个数字.

 

4)求最大值(Max)

 1 package yjmyzz.mr;
 2 
 3 import org.apache.hadoop.conf.Configuration;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.LongWritable;
 6 import org.apache.hadoop.io.NullWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Job;
 9 import org.apache.hadoop.mapreduce.Mapper;
10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13 import org.apache.hadoop.util.GenericOptionsParser;
14 import yjmyzz.util.HDFSUtil;
15 
16 import java.io.IOException;
17 
18 
19 public class Max {
20 
21     public static class MaxMapper
22             extends Mapper<LongWritable, Text, LongWritable, NullWritable> {
23 
24         public long max = Long.MIN_VALUE;
25 
26         public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
27             max = Math.max(Long.parseLong(value.toString()), max);
28         }
29 
30         protected void cleanup(Mapper.Context context) throws IOException, InterruptedException {
31             context.write(new LongWritable(max), NullWritable.get());
32         }
33 
34     }
35 
36     public static class MaxReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> {
37 
38         public long max = Long.MIN_VALUE;
39 
40         public void reduce(LongWritable key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
41 
42             max = Math.max(max, key.get());
43 
44         }
45 
46 
47         protected void cleanup(Reducer.Context context) throws IOException, InterruptedException {
48             context.write(new LongWritable(max), NullWritable.get());
49         }
50 
51     }
52 
53     public static void main(String[] args) throws Exception {
54         Configuration conf = new Configuration();
55         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
56         if (otherArgs.length < 2) {
57             System.err.println("Usage: Max <in> [<in>...] <out>");
58             System.exit(2);
59         }
60 
61         //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
62         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
63 
64         Job job = Job.getInstance(conf, "Max");
65         job.setJarByClass(Max.class);
66         job.setMapperClass(MaxMapper.class);
67         job.setCombinerClass(MaxReducer.class);
68         job.setReducerClass(MaxReducer.class);
69         job.setOutputKeyClass(LongWritable.class);
70         job.setOutputValueClass(NullWritable.class);
71 
72         for (int i = 0; i < otherArgs.length - 1; ++i) {
73             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
74         }
75         FileOutputFormat.setOutputPath(job,
76                 new Path(otherArgs[otherArgs.length - 1]));
77         System.exit(job.waitForCompletion(true) ? 0 : 1);
78     }
79 
80 
81 }
View Code

输出结果:8

如果看懂了刚才的Count2版本的代码,这个自然不用多解释.

 

5)求和(Sum)

 1 package yjmyzz.mr;
 2 
 3 import org.apache.hadoop.conf.Configuration;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.LongWritable;
 6 import org.apache.hadoop.io.NullWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Job;
 9 import org.apache.hadoop.mapreduce.Mapper;
10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
13 import org.apache.hadoop.util.GenericOptionsParser;
14 import yjmyzz.util.HDFSUtil;
15 
16 import java.io.IOException;
17 
18 
19 public class Sum {
20 
21     public static class SumMapper
22             extends Mapper<LongWritable, Text, LongWritable, NullWritable> {
23 
24         public long sum = 0;
25 
26         public void map(LongWritable key, Text value, Context context)
27                 throws IOException, InterruptedException {
28             sum += Long.parseLong(value.toString());
29         }
30 
31         protected void cleanup(Context context) throws IOException, InterruptedException {
32             context.write(new LongWritable(sum), NullWritable.get());
33         }
34 
35     }
36 
37     public static class SumReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> {
38 
39         public long sum = 0;
40 
41         public void reduce(LongWritable key, Iterable<NullWritable> values, Context context)
42                 throws IOException, InterruptedException {
43             sum += key.get();
44         }
45 
46 
47         protected void cleanup(Context context) throws IOException, InterruptedException {
48             context.write(new LongWritable(sum), NullWritable.get());
49         }
50 
51     }
52 
53     public static void main(String[] args) throws Exception {
54         Configuration conf = new Configuration();
55         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
56         if (otherArgs.length < 2) {
57             System.err.println("Usage: Sum <in> [<in>...] <out>");
58             System.exit(2);
59         }
60 
61         //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
62         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
63 
64         Job job = Job.getInstance(conf, "Sum");
65         job.setJarByClass(Sum.class);
66         job.setMapperClass(SumMapper.class);
67         job.setCombinerClass(SumReducer.class);
68         job.setReducerClass(SumReducer.class);
69         job.setOutputKeyClass(LongWritable.class);
70         job.setOutputValueClass(NullWritable.class);
71 
72         for (int i = 0; i < otherArgs.length - 1; ++i) {
73             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
74         }
75         FileOutputFormat.setOutputPath(job,
76                 new Path(otherArgs[otherArgs.length - 1]));
77         System.exit(job.waitForCompletion(true) ? 0 : 1);
78     }
79 
80 
81 }
View Code

输出结果:43

Sum与刚才的Max原理如出一辙,不多解释了,依旧利用了cleanup方法

 

6)求平均值(Avg)

  1 package yjmyzz.mr;
  2 
  3 import org.apache.hadoop.conf.Configuration;
  4 import org.apache.hadoop.fs.Path;
  5 import org.apache.hadoop.io.*;
  6 import org.apache.hadoop.mapreduce.Job;
  7 import org.apache.hadoop.mapreduce.Mapper;
  8 import org.apache.hadoop.mapreduce.Reducer;
  9 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 10 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
 11 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 12 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 13 import org.apache.hadoop.util.GenericOptionsParser;
 14 import yjmyzz.util.HDFSUtil;
 15 
 16 import java.io.IOException;
 17 
 18 
 19 public class Average {
 20 
 21     public static class AvgMapper
 22             extends Mapper<LongWritable, Text, LongWritable, LongWritable> {
 23 
 24         public long sum = 0;
 25         public long count = 0;
 26 
 27         public void map(LongWritable key, Text value, Context context)
 28                 throws IOException, InterruptedException {
 29             sum += Long.parseLong(value.toString());
 30             count += 1;
 31         }
 32 
 33         protected void cleanup(Context context) throws IOException, InterruptedException {
 34             context.write(new LongWritable(sum), new LongWritable(count));
 35         }
 36 
 37     }
 38 
 39     public static class AvgCombiner extends Reducer<LongWritable, LongWritable, LongWritable, LongWritable> {
 40 
 41         public long sum = 0;
 42         public long count = 0;
 43 
 44         public void reduce(LongWritable key, Iterable<LongWritable> values, Context context)
 45                 throws IOException, InterruptedException {
 46             sum += key.get();
 47             for (LongWritable v : values) {
 48                 count += v.get();
 49             }
 50         }
 51 
 52         protected void cleanup(Context context) throws IOException, InterruptedException {
 53             context.write(new LongWritable(sum), new LongWritable(count));
 54         }
 55 
 56     }
 57 
 58     public static class AvgReducer extends Reducer<LongWritable, LongWritable, DoubleWritable, NullWritable> {
 59 
 60         public long sum = 0;
 61         public long count = 0;
 62 
 63         public void reduce(LongWritable key, Iterable<LongWritable> values, Context context)
 64                 throws IOException, InterruptedException {
 65             sum += key.get();
 66             for (LongWritable v : values) {
 67                 count += v.get();
 68             }
 69         }
 70 
 71 
 72         protected void cleanup(Context context) throws IOException, InterruptedException {
 73             context.write(new DoubleWritable(new Double(sum)/count), NullWritable.get());
 74         }
 75 
 76     }
 77 
 78     public static void main(String[] args) throws Exception {
 79         Configuration conf = new Configuration();
 80         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 81         if (otherArgs.length < 2) {
 82             System.err.println("Usage: Avg <in> [<in>...] <out>");
 83             System.exit(2);
 84         }
 85 
 86         //删除输出目录(可选,省得多次运行时,总是报OUTPUT目录已存在)
 87         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
 88 
 89         Job job = Job.getInstance(conf, "Avg");
 90         job.setJarByClass(Average.class);
 91         job.setMapperClass(AvgMapper.class);
 92         job.setCombinerClass(AvgCombiner.class);
 93         job.setReducerClass(AvgReducer.class);
 94 
 95         //注意这里:由于Mapper与Reducer的输出Key,Value类型不同,所以要单独为Mapper设置类型
 96         job.setMapOutputKeyClass(LongWritable.class);
 97         job.setMapOutputValueClass(LongWritable.class);
 98 
 99         
100         job.setOutputKeyClass(DoubleWritable.class);
101         job.setOutputValueClass(NullWritable.class);
102 
103         for (int i = 0; i < otherArgs.length - 1; ++i) {
104             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
105         }
106         FileOutputFormat.setOutputPath(job,
107                 new Path(otherArgs[otherArgs.length - 1]));
108         System.exit(job.waitForCompletion(true) ? 0 : 1);
109     }
110 
111 
112 }
View Code

输出:3.909090909090909

这个稍微要复杂一点,平均值大家都知道=Sum/Count,所以这其实前面Count与Max的综合运用而已,思路是在输出的key-value中,用max做key,用count做value,最终形成{sum,count}的输出,然后在最后的cleanup中,sum/count即得avg,但是有一个特点要注意的地方,由于Mapper与Reducer的output {key,value}类型并不一致,所以96-101行这里,分别设置了Map及Reduce的key,value输出类型,如果没有96-97这二行,100-101这二行会默认把Mapper,Combiner,Reducer这三者的输出类型设置成相同的类型.

 

7) 改进型的WordCount(按词频倒排)

官网示例WordCount只统计出单词出现的次数,并未按词频做倒排,下面的代码示例实现了该功能

 1 package yjmyzz.mr;
 2 
 3 import org.apache.hadoop.conf.Configuration;
 4 import org.apache.hadoop.fs.Path;
 5 import org.apache.hadoop.io.IntWritable;
 6 import org.apache.hadoop.io.LongWritable;
 7 import org.apache.hadoop.io.NullWritable;
 8 import org.apache.hadoop.io.Text;
 9 import org.apache.hadoop.mapreduce.Job;
10 import org.apache.hadoop.mapreduce.Mapper;
11 import org.apache.hadoop.mapreduce.Reducer;
12 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
13 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
14 import org.apache.hadoop.util.GenericOptionsParser;
15 import yjmyzz.util.HDFSUtil;
16 
17 import java.io.IOException;
18 import java.util.Comparator;
19 import java.util.StringTokenizer;
20 import java.util.TreeMap;
21 
22 
23 public class WordCount2 {
24 
25     public static class TokenizerMapper
26             extends Mapper<Object, Text, Text, IntWritable> {
27 
28         private final static IntWritable one = new IntWritable(1);
29         private Text word = new Text();
30 
31         public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
32             StringTokenizer itr = new StringTokenizer(value.toString());
33             while (itr.hasMoreTokens()) {
34                 word.set(itr.nextToken());
35                 context.write(word, one);
36             }
37         }
38     }
39 
40     public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
41 
42         //定义treeMap来保持统计结果,由于treeMap是按key升序排列的,这里要人为指定Comparator以实现倒排
43         private TreeMap<Integer, String> treeMap = new TreeMap<Integer, String>(new Comparator<Integer>() {
44             @Override
45             public int compare(Integer x, Integer y) {
46                 return y.compareTo(x);
47             }
48         });
49 
50         public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
51             //reduce后的结果放入treeMap,而不是向context中记入结果
52             int sum = 0;
53             for (IntWritable val : values) {
54                 sum += val.get();
55             }
56             if (treeMap.containsKey(sum)){
57                 String value = treeMap.get(sum) + "," + key.toString();
58                 treeMap.put(sum,value);
59             }
60             else {
61                 treeMap.put(sum, key.toString());
62             }
63         }
64 
65         protected void cleanup(Context context) throws IOException, InterruptedException {
66             //将treeMap中的结果,按value-key顺序写入contex中
67             for (Integer key : treeMap.keySet()) {
68                 context.write(new Text(treeMap.get(key)), new IntWritable(key));
69             }
70         }
71     }
72 
73     public static void main(String[] args) throws Exception {
74         Configuration conf = new Configuration();
75         String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
76         if (otherArgs.length < 2) {
77             System.err.println("Usage: wordcount2 <in> [<in>...] <out>");
78             System.exit(2);
79         }
80         //删除输出目录
81         HDFSUtil.deleteFile(conf, otherArgs[otherArgs.length - 1]);
82         Job job = Job.getInstance(conf, "word count2");
83         job.setJarByClass(WordCount2.class);
84         job.setMapperClass(TokenizerMapper.class);
85         job.setCombinerClass(IntSumReducer.class);
86         job.setReducerClass(IntSumReducer.class);
87         job.setOutputKeyClass(Text.class);
88         job.setOutputValueClass(IntWritable.class);
89         for (int i = 0; i < otherArgs.length - 1; ++i) {
90             FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
91         }
92         FileOutputFormat.setOutputPath(job,
93                 new Path(otherArgs[otherArgs.length - 1]));
94         System.exit(job.waitForCompletion(true) ? 0 : 1);
95     }
96 
97 
98 }
View Code

原理: 依然用到了cleanup,此外为了实现排序,采用了TreeMap这种内置了key排序的数据结构.

这里为了展示更直观,选用了电影<超能陆战队>主题曲的第一段歌词做为输入:

They say we are what we are
But we do not have to be
I am  bad behavior but I do it in the best way
I will be the watcher
Of the eternal flame
I will be the guard dog
of all your fever dreams

原版的WordCount处理完后,结果如下:

But	1
I	4
Of	1
They	1
all	1
am	1
are	2
bad	1
be	3
behavior	1
best	1
but	1
do	2
dog	1
dreams	1
eternal	1
fever	1
flame	1
guard	1
have	1
in	1
it	1
not	1
of	1
say	1
the	4
to	1
watcher	1
way	1
we	3
what	1
will	2
your	1

改进后的WordCount2处理结果如下:

I,the	4
be,we	3
are,do,will	2
But,Of,They,all,am,bad,behavior,best,but,dog,dreams,eternal,fever,flame,guard,have,in,it,not,of,say,to,watcher,way,what,your	1

 

目录
相关文章
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
78 2
|
15天前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
104 3
|
2月前
|
分布式计算 资源调度 数据可视化
Hadoop-06-Hadoop集群 历史服务器配置 超详细 执行任务记录 JobHistoryServer MapReduce执行记录 日志聚合结果可视化查看
Hadoop-06-Hadoop集群 历史服务器配置 超详细 执行任务记录 JobHistoryServer MapReduce执行记录 日志聚合结果可视化查看
50 1
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
54 1
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
103 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
47 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
57 0
|
7月前
|
存储 分布式计算 监控
Hadoop【基础知识 01+02】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
329 2
|
4月前
|
缓存 分布式计算 算法
优化Hadoop MapReduce性能的最佳实践
【8月更文第28天】Hadoop MapReduce是一个用于处理大规模数据集的软件框架,适用于分布式计算环境。虽然MapReduce框架本身具有很好的可扩展性和容错性,但在某些情况下,任务执行可能会因为各种原因导致性能瓶颈。本文将探讨如何通过调整配置参数和优化算法逻辑来提高MapReduce任务的效率。
638 0

相关实验场景

更多