【预测模型】基于极端随机树实现数据回归预测和分类附matlab代码

简介: 【预测模型】基于极端随机树实现数据回归预测和分类附matlab代码

1 简介

2 部分代码

function [ensemble,output,scores,depths] = buildAnEnsemble(M,K,nmin,data,problemType,inputType,sampleWeights)%% Builds an ensemble of Extra-Trees for regression or classification% datasets%  % Inputs : % M             = number of trees in the ensemble% K             = number of attributes randomly selected at each node% nmin          = minimum sample size for splitting a node% data          = calibration dataset (targets are in the last column) % problemType   = specify problem type (1 for regression, zero for classification)% inputType     = binary vector indicating feature type(0:categorical,1:numerical)% sampleWeights = weights of the samples (used for IterativeInputSelection)% only include input type for classification problems% %% Outputs : % ensemble  = the ensemble, which is a M-long array of Extra-Tree structs  %             (see buildAnExtraTree for the details regarding each field)   % output    = predictions of the ensemble on the training data set %%%% Copyright 2015 Ahmad Alsahaf% Research fellow, Politecnico di Milano% ahmadalsahaf@gmail.com%% Copyright 2014 Riccardo Taormina % Ph.D. Student, Hong Kong Polytechnic University  % riccardo.taormina@gmail.com %% Please refer to README.txt for bibliographical references on Extra-Trees!%% This file is part of MATLAB_ExtraTrees%%     MATLAB_ExtraTrees is free software: you can redistribute it and/or modify%     it under the terms of the GNU General Public License as published by%     the Free Software Foundation, either version 3 of the License, or%     (at your option) any later version.% %     MATLAB_ExtraTrees is distributed in the hope that it will be useful,%     but WITHOUT ANY WARRANTY; without even the implied warranty of%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the%     GNU General Public License for more details.% %     You should have received a copy of the GNU General Public License%     along with MATLAB_ExtraTrees_classification.  If not, see <http://www.gnu.org/licenses/>.if problemType == 0    [ensemble,output,scores,depths] = buildAnEnsemble_r(M,K,nmin,data);    else    [ensemble,output,scores,depths] = buildAnEnsemble_c(M,K,nmin,data,inputType,sampleWeights);%     [ensemble,output,scores,depths] = buildAnEnsemble_c(M,K,nmin,data,sampleWeights);end

3 仿真结果

4 参考文献

[1]金康荣, 於东军. 基于加权朴素贝叶斯分类器和极端随机树的蛋白质接触图预测[J]. 南京航空航天大学学报, 2018, 50(5):10.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
4天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
29天前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
1月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
2月前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
73 0
|
2月前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
82 1
|
2月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章