1 简介
2 部分代码
function [ensemble,output,scores,depths] = buildAnEnsemble(M,K,nmin,data,problemType,inputType,sampleWeights)%% Builds an ensemble of Extra-Trees for regression or classification% datasets% % Inputs : % M = number of trees in the ensemble% K = number of attributes randomly selected at each node% nmin = minimum sample size for splitting a node% data = calibration dataset (targets are in the last column) % problemType = specify problem type (1 for regression, zero for classification)% inputType = binary vector indicating feature type(0:categorical,1:numerical)% sampleWeights = weights of the samples (used for IterativeInputSelection)% only include input type for classification problems% %% Outputs : % ensemble = the ensemble, which is a M-long array of Extra-Tree structs % (see buildAnExtraTree for the details regarding each field) % output = predictions of the ensemble on the training data set %%%% Copyright 2015 Ahmad Alsahaf% Research fellow, Politecnico di Milano% ahmadalsahaf@gmail.com%% Copyright 2014 Riccardo Taormina % Ph.D. Student, Hong Kong Polytechnic University % riccardo.taormina@gmail.com %% Please refer to README.txt for bibliographical references on Extra-Trees!%% This file is part of MATLAB_ExtraTrees%% MATLAB_ExtraTrees is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.% % MATLAB_ExtraTrees is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.% % You should have received a copy of the GNU General Public License% along with MATLAB_ExtraTrees_classification. If not, see <http://www.gnu.org/licenses/>.if problemType == 0 [ensemble,output,scores,depths] = buildAnEnsemble_r(M,K,nmin,data); else [ensemble,output,scores,depths] = buildAnEnsemble_c(M,K,nmin,data,inputType,sampleWeights);% [ensemble,output,scores,depths] = buildAnEnsemble_c(M,K,nmin,data,sampleWeights);end
3 仿真结果
4 参考文献
[1]金康荣, 於东军. 基于加权朴素贝叶斯分类器和极端随机树的蛋白质接触图预测[J]. 南京航空航天大学学报, 2018, 50(5):10.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。