【纹理分割】Matlab实现纹理图像分割

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 【纹理分割】Matlab实现纹理图像分割

 1 简介

image.gif编辑

2 部分代码

%clear all; clc; clf; warning off; close all hidden;totalt = 0; % Total time spent on segmentation.% PRE-PROCESS the image to produce a feature set.%   1. Texture processing using DOOG filters%   2. Principle component analysis to reduce dimensionality%   3. Random sampling of imageimg = im2double(imread('6.bmp')); % Read gray image%img = im2double(imread('girl.bmp')); % Read color imagedisp('Preprocessing...');tic;% Preprocess all[allfeatures, rDims, cDims, depth] = preprocfast(img);[samples,olddimensions] = size(allfeatures);gallfeatures = allfeatures;% Combine all texture features to use for later thresholding% Also save all low pass features for later adjacency processingif depth == 1    texturefeature = max(allfeatures(:,4:11), [], 2);    lowpassfeature = allfeatures(:,3);    lowpassimage = reshape(lowpassfeature, [cDims rDims])';else    texturefeature = max(allfeatures(:,6:13), [], 2);    lowpassfeature = allfeatures(:,3:5);    lowpassimage(:,:,1) = reshape(lowpassfeature(:,1), [cDims rDims])';    lowpassimage(:,:,2) = reshape(lowpassfeature(:,2), [cDims rDims])';    lowpassimage(:,:,3) = reshape(lowpassfeature(:,3), [cDims rDims])';endtextures = reshape(texturefeature, [cDims rDims])';% Principle component based dimensionality reduction of all featuresallfeatures = pca(allfeatures, 0.05); % Choose 10% of samples randomly and save in DATASET[samples, dimensions] = size(allfeatures);% We work on ~WORKSAMPLES pixels. If the image has less we use all pixels. % If not then the appropriate portion of pixels is randomly selected.worksamples = samples/10;if worksamples < 10000    worksamples = 10000;endif samples < worksamples    worksamples = samples;endchoose = rand([samples 1]); choose = choose < (worksamples/samples); dataset = zeros([sum(choose), dimensions]);dataset(1:sum(choose),:) = allfeatures(find(choose),:); % find(choose) returns array where choose is non zerodisp('Preprocessing done.');t = toc; totalt = totalt + t;disp(['     Original dimensions: ' int2str(olddimensions)]);disp(['     Reduced dimensions by PCA: ' int2str(dimensions)]);disp(['     Image has ' int2str(rDims * cDims) ' pixels.']);disp(['     Using only ' int2str(size(dataset,1)) ' pixels.']);disp(['Elapsed time: ' num2str(t)]);disp(' ');% SEGMENTATION%   1. k-means (on sampled image)%   2. Use centroids to classify remaining points%   3. Classify spatially disconnected regions as separate regions% Segmentation Step 1. %   k-means (on sampled image)% Compute k-means on randomly sampled pointsdisp('Computing k-means...');tic;% Set number of clusters heuristically.k = round((rDims*cDims)/(100*100)); k = max(k,8); k = min(k,16);% Uncomment this line when MATLAB k-means unavailable%[centroids,esq,map] = kmeanlbg(dataset,k);[map, centroids] = kmeans(dataset, k);  % Calculate k-means (use MATLAB k-meandisp('k-means done.');t = toc; totalt = totalt + t;disp(['     Number of clusters: ' int2str(k)]);disp(['Elapsed time: ' num2str(t)]);disp(' ');% Segmentation Step 2. %   Use centroids to classify the remaining pointsdisp('Using centroids to classify all points...');tic;globsegimage = postproc(centroids, allfeatures, rDims, cDims);   % Use centroids to classify all points% Segmentation Step 3.%   Classify spatially disconnected regions as separate regionsglobsegimage = medfilt2(globsegimage, [3 3], 'symmetric');globsegimage = imfill(globsegimage);region_count = max(max(globsegimage));count = 1; newglobsegimage = zeros(size(globsegimage));for i = 1:region_count    region = (globsegimage == i);    [bw, num] = bwlabel(region);    for j = 1:num        newglobsegimage = newglobsegimage + count*(bw == j);        count = count + 1;    endendoldglobsegimage = globsegimage;globsegimage = newglobsegimage;disp('Classification done.');t = toc; totalt = totalt + t;disp(['Elapsed time: ' num2str(t)]);disp(' ');% DISPLAY IMAGES% Display segments%figure(1), imshow(globsegimage./max(max(globsegimage)));figure(1), imshow(label2rgb(globsegimage, 'gray'));title('Segments');% Calculate boundary of segmentsBW = edge(globsegimage,'sobel', 0);% Superimpose boundary on original imageiout = img;if (depth == 1) % Gray image, so use color lines    iout(:,:,1) = iout;    iout(:,:,2) = iout(:,:,1);    iout(:,:,3) = iout(:,:,1);    iout(:,:,2) = min(iout(:,:,2) + BW, 1.0);    iout(:,:,3) = min(iout(:,:,3) + BW, 1.0);else            % RGB image, so use white lines    iout(:,:,1) = min(iout(:,:,1) + BW, 1.0);    iout(:,:,2) = min(iout(:,:,2) + BW, 1.0);    iout(:,:,3) = min(iout(:,:,3) + BW, 1.0);end% Display image and segmentsfigure(2), imshow(iout);title('Segmented image');% POST PROCESSING AND AUTOMATIC SELECTION OF SOURCE AND TARGET REGIONS%   1. Find overall textured region using Otsu's method (MATLAB graythresh)%   2. Save each region and region boundary separately and note index of%      textured regions%   3. For each textured region, find all adjacent untextured regions and%      save in adjacency matrix. Regions having a significant common border%      are considered adjacent.%   4. Find similarity between textured and adjacent untextured regions%      using average gray level matching (average color matching). For each%      textured region, drop those adjacent regions which don't match in%      gray level.disp('Post-processing and automatically selecting source and target regions...');tic;% POSTPROC Step 1threshold = graythresh(rescalegray(textures));bwtexture = textures > threshold;tex_edges = edge(bwtexture, 'sobel', 0);figure(3),if depth == 1    imshow(min(img + tex_edges, 1));else    imshow(min(img + cat(3, tex_edges, tex_edges, tex_edges), 1));endtitle('Textured regions');% POSTPROC Step 2% Save each region in a dimension% Save each region boundary in a dimension% For each region which can be classified as a textured region store indexregion_count = max(max(globsegimage));number_tex_regions = 1; tex_list = [];for region_number = 1:region_count     bwregion = (globsegimage == region_number);        regions(:,:,region_number) = bwregion; % Save all regions    region_boundaries(:,:,region_number) = edge(bwregion, 'sobel', 0);    if ( (sum(sum(bwregion.*bwtexture))/sum(sum(bwregion)) > 0.75) && sum(sum(bwregion)) > (32*32) )        tex_list = [tex_list region_number];        number_tex_regions = number_tex_regions + 1;    endendnumber_tex_regions = number_tex_regions - 1;% POSTPROC Step 3% Find texture region adjacency and create an adjacency matrixfor i = 1:size(tex_list, 2)    for j = 1:region_count        if (tex_list(i) ~= j)            boundary_overlap = sum(sum( region_boundaries(:,:,tex_list(i)).*region_boundaries(:,:,j) ));            boundary_total_length = sum(sum( region_boundaries(:,:,tex_list(i)))) + sum(sum(region_boundaries(:,:,j)));            if (boundary_overlap/boundary_total_length > 0) % If overlap is at least 20% of total boundary length                region_adjacency(i,j) = boundary_overlap;     % accept it as a boundary            end        end    endend% EXPERIMENTAL% Find adjacency matrix between all regions and segment the regions using% N-Cut.% for i = 1:region_count%     region_feature(i,:) = get_region_features(regions(:,:,i), allfeatures);% end% for i = 1:region_count%     for j = 1:region_count%         W(i,j) = % END EXPERIMENTAL% Those regions for which the edge overlap length is less than 20% of the% mean overlap length are not considered adjacent. Update the adjacency% matrix to reflect this.region_adj_hard_coded = (region_adjacency - 0.2*repmat(mean(region_adjacency,2), [1 size(region_adjacency,2)])) > 0;% Copy adjacency into another variable and remove all references to % textured regions from the adjacency matrix.region_output = region_adj_hard_coded;for tex_count = 1:size(tex_list, 2)    region_output(:,tex_list(tex_count)) = 0;end% POSTPROC Step 4% Find similarity between textured and adjacent untextured regions% (This could be changed to a chi-squared distance between histograms of%  textLP and adjacent by commenting out required code, and uncommenting %  other code, as directed in the source)% For all textured regions find and save average brightnessfor tex_count = 1:size(tex_list, 2)    if depth == 1         tex_avg_bright(tex_count) = sum(sum(regions(:,:,tex_list(tex_count)).*lowpassimage)) ...                         / sum(sum(regions(:,:,tex_list(tex_count))));        % Comment previous and uncomment next line(s) to use histogram        % processing           %tex_hist{tex_count} = histproc(regions(:,:,tex_list(tex_count)), lowpassimage);    else        tex_avg_bright(1,tex_count) = sum(sum(regions(:,:,tex_list(tex_count)).*lowpassimage(:,:,1))) ...                                / sum(sum(regions(:,:,tex_list(tex_count))));        tex_avg_bright(2,tex_count) = sum(sum(regions(:,:,tex_list(tex_count)).*lowpassimage(:,:,2))) ...                                / sum(sum(regions(:,:,tex_list(tex_count))));        tex_avg_bright(3,tex_count) = sum(sum(regions(:,:,tex_list(tex_count)).*lowpassimage(:,:,3))) ...                                / sum(sum(regions(:,:,tex_list(tex_count))));        % Comment previous and uncomment next line(s) to use histogram        % processing                % tex_hist{tex_count} = histproc(regions(:,:,tex_list(tex_count)), lowpassimage);    endend% For all textured regions, consider each non-textured region and update% adjacency matrix. Keep the relationship if gray levels (colors) are similar and % drop if the gray levels (colors) don't match.for tex_count = 1:size(tex_list, 2) % For all textured regions    for adj_reg_count = 1:size(region_adj_hard_coded, 2)        if (region_adj_hard_coded(tex_count, adj_reg_count) > 0)            if depth == 1                region_avg_bright = sum(sum(regions(:,:,adj_reg_count).*lowpassimage)) ...                                    / sum(sum(regions(:,:,adj_reg_count)));                % Comment previous and uncomment next line(s) to use histogram                % processing                   % region_hist = histproc(regions(:,:,adj_reg_count), lowpassimage);            else                region_avg_bright(1) = sum(sum(regions(:,:,adj_reg_count).*lowpassimage(:,:,1))) ...                                    / sum(sum(regions(:,:,adj_reg_count)));                region_avg_bright(2) = sum(sum(regions(:,:,adj_reg_count).*lowpassimage(:,:,2))) ...                                    / sum(sum(regions(:,:,adj_reg_count)));                region_avg_bright(3) = sum(sum(regions(:,:,adj_reg_count).*lowpassimage(:,:,3))) ...                                    / sum(sum(regions(:,:,adj_reg_count)));                % Comment previous and uncomment next line(s) to use histogram                % processing                                                   % region_hist = histproc(regions(:,:,adj_reg_count), lowpassimage);            end                        if depth == 1                if abs(tex_avg_bright(tex_count) - region_avg_bright) > 0.2 % Highly similar                    region_output(tex_count, adj_reg_count) = 0;                end                % Comment previous and uncomment next line(s) to use histogram                % processing                   %                 if chisq(tex_hist{tex_count}, region_hist) > 0.4%                     chisq(tex_hist{tex_count}, region_hist)%                     region_output(tex_count, adj_reg_count) = 0;%                 end            else                if mean(abs(tex_avg_bright(:,tex_count) - region_avg_bright')) > 0.2                    region_output(tex_count, adj_reg_count) = 0;                end                % Comment previous and uncomment next line(s) to use histogram                % processing                   %                 thist = tex_hist{tex_count};%                 chisq(thist(:,1),region_hist(:,1))%                 chisq(thist(:,2),region_hist(:,2))%                 chisq(thist(:,3),region_hist(:,3))%                 t = 0.9;%                 if (chisq(thist(:,1),region_hist(:,1)) > t) || ...%                    (chisq(thist(:,2),region_hist(:,2)) > t) || ...%                    (chisq(thist(:,3),region_hist(:,3)) > t)%                     region_output(tex_count, adj_reg_count) = 0;%                 end            end                 end    endenddisp('Post-processing done.'); t = toc; totalt = totalt + t;disp(['Elapsed time: ' num2str(t)]);disp(' ');disp(['Total time elapsed: ' int2str(floor(totalt/60)) ' minutes ' int2str(mod(totalt,60)) ' seconds.']);% DISPLAY IMAGES% Display source and target regions.if depth == 1    imgs = zeros([rDims cDims size(tex_list,2)]);    for tex_count = 1:size(tex_list, 2)        if (sum(region_output(tex_count,:) > 0)) % If we have target patches            imgs(:,:,tex_count) = regions(:,:,tex_list(tex_count)).*img; % Save that source patch            for i = 1:size(region_output, 2) % For each region                if (region_output(tex_count, i) > 0)    % which is connected to that source patch                    imgs(:,:,tex_count) = imgs(:,:,tex_count) + 0.5*regions(:,:,i).*img; % Save the target patch                end            end            figure, imshow(min(imgs(:,:,tex_count) + BW, 1));            ggg{tex_count} = min(imgs(:,:,tex_count) + BW, 1);            title('Potential source and target regions');        end    endelse % depth == 3     count = 1;    for tex_count = 1:size(tex_list, 2)        if (sum(region_output(tex_count,:) > 0)) % If we have target patches            tmp(:,:,1) = regions(:,:,tex_list(tex_count)).*img(:,:,1);            tmp(:,:,2) = regions(:,:,tex_list(tex_count)).*img(:,:,2);            tmp(:,:,3) = regions(:,:,tex_list(tex_count)).*img(:,:,3);            imgs{count} = tmp;            for i = 1:size(region_output, 2) % For each region                if (region_output(tex_count, i) > 0)    % which is connected to that source patch                    tmp(:,:,1) = 0.5*regions(:,:,i).*img(:,:,1);                    tmp(:,:,2) = 0.5*regions(:,:,i).*img(:,:,2);                    tmp(:,:,3) = 0.5*regions(:,:,i).*img(:,:,3);                    imgs{count} = imgs{count} + tmp;                end            end            figure, imshow(min(imgs{count} + cat(3,BW,BW,BW), 1));            ggg{count} = min(imgs{count} + cat(3,BW,BW,BW), 1);            title('Potential source and target regions');            count = count+1;        end    endend

3 仿真结果

image.gif编辑

4 参考文献

[1]马浩然. 基于纹理的图像分割方法研究[D]. 电子科技大学.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

5 代码下载

相关文章
|
7月前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到&quot;result.txt&quot;以供MATLAB显示图像分割效果。
|
7月前
|
机器学习/深度学习 存储 算法
毕业论文:基于matlab的数字图像分割技术研究及实现(分享需要的同学)
毕业论文:基于matlab的数字图像分割技术研究及实现(分享需要的同学)
211 0
|
机器学习/深度学习 传感器 算法
基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)
基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
|
机器学习/深度学习 算法
SCA算法优化脉冲耦合神经网络的图像自动分割(Matlab代码实现)
SCA算法优化脉冲耦合神经网络的图像自动分割(Matlab代码实现)
116 0
SCA算法优化脉冲耦合神经网络的图像自动分割(Matlab代码实现)
|
机器学习/深度学习 算法 计算机视觉
基于形态学处理的条形码数字分割和识别算法MATLAB仿真
基于形态学处理的条形码数字分割和识别算法MATLAB仿真
|
机器学习/深度学习 数据采集 存储
【3-D深度学习:肺肿瘤分割】创建和训练 V-Net 神经网络,并从 3D 医学图像中对肺肿瘤进行语义分割研究(Matlab代码实现)
【3-D深度学习:肺肿瘤分割】创建和训练 V-Net 神经网络,并从 3D 医学图像中对肺肿瘤进行语义分割研究(Matlab代码实现)
274 0
|
机器学习/深度学习 算法 计算机视觉
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
135 0
|
机器学习/深度学习 人工智能 算法
【深度学习】基于 K-means 聚类算法的图像区域分割(Matlab代码实现)
【深度学习】基于 K-means 聚类算法的图像区域分割(Matlab代码实现)
224 0

热门文章

最新文章