【语音识别】基于动态时间规整算法(DTW)实现中文语音识别系统含Matlab源码

简介: 【语音识别】基于动态时间规整算法(DTW)实现中文语音识别系统含Matlab源码

 

1 简介

  1、语音识别系统概述

       语音信号是一种典型的非平稳信号,并且在录音过程中不免受到电噪音,呼吸产生的气流噪音以及录音环境下的突发噪音的影响,所以语音信号要经过预滤波、采样量化、分帧、加窗、预加重、端点检测等预处理过程后才可以进行下一步的特征征参数提取等工作。在接下来的语音训练阶段,我们将那些信号状态良好,携带噪声小且特征参数稳定的语音信号作为指定词条的模板,进而为每个词条创建一个模板并保存为模板库。在识别阶段,语音信号经过相同的通道生成测试模板,用相同的方法计算测试模板的特征参数后,将其与模板库模板的特征参数进行匹配,配分数最高的参考模板作为识别结果。

       2、语音信号的录入

       语音信号的采集方法有很多,鉴于该系统是在MATLAB上实现,且MATLAB本身提供了一定的音频处理函数,因此我们完全可以采用在MATLAB中先完成录音函数的编写,然后再结合windows自带的录音设备进行录音。录音得到的wav文件即是经过预滤波采样和量化的语音。利用soundview读所录入的文件时,会弹出一个GUI界面,并可以通过输出设备对所录语音进行回访,该GUI界面如图1所示。单击Play Again按钮可可回放,单击Done按钮可关闭界面。

       3、语音信号的预加重

       我们知道,对语音识别更有用的是语音的高频部分,而对于语音信号的频谱,通常是频率越高幅值越低。因此我们必须对语音的高频进行加重处理。处理方法是将语音信号通过一个一阶高通滤波器,即预加重滤波器,它不仅能滤除低频提升高频,还能很好的抑制50Hz到60Hz的工频干扰。尤其在短点检测之前进行预加重还可起到消除直流漂移、抑制随机噪声和提升清音部分能量的效果。预加重在Matlab中可由语句x=filter([1-0.9375],1,x)实现。

       4、语音信号的分帧和加窗

       经过数字化的语音信号实际上是一个时变信号,为了能用传统的方法对语音信号进行分析,应假设语音信号在10ms-30ms内是短时平稳的。为了得到短时的语音信号,要对语音信号进行加窗操作。窗函数平滑地在语音信号上滑动,将语音信号进行分帧,帧与帧的交叠为帧移,一般为窗长的一半。

       语音信号的分帧采用enframe函数,其语法为f=enframe(x,len,inc);其中X为输入的语音信号,len为制定的帧长,inc为指定帧移。函数将返回一个n×len的一个矩阵,每行都是一帧数据。在本系统中帧长取240,帧移取80。在Matlab中要实现加窗即将分帧后的语音信号乘上窗函数,本文加汉明窗,即为x=x.*hamming(N)。

       5、端点检测

       在语音识别系统中,训练阶段和建模阶段都比较重要的环节都是要先通过端点检测找到语音的起点和终点,这样,我们就可以只对有效语音进行处理,这对于识别的准确率和识别效率至关重要。本论文在短点检测环节采用双门限端点检测法,即采用短时能量检测和短时过零率检测双重指标约束。结合实际,我们将整个语音端点检测分为四个段落,即:无声段、等待段、语音段、结束段,再为短时能量和短时过零率各设置一个高门限和一个低门限:EHigh、ELow和ZHigh、ZLow。结合MATLAB中所编程序,可以较准确的确定语音的各个部分。图2所示为语音“1”的处理结果。

       6、特征参数的提取

       经过预处理的语音数据就可以进行特征参数提取,特征参数的好坏将直接影响系统的性能和效率。本文将梅尔倒谱系数(MFCC)和一阶MFCC系数的差分结合起来,将其合并为一个矢量作为一帧语音信号的参数,这样,不仅描述了语音的静态特性,由于加入了差分倒谱参数,语音的动态特性得到了更好的体现。梅尔倒谱参数的计算流程为:先将预处理过的语音信号进行快速傅立叶变换,将时域信号变换成为信号的功率谱。 再用一组Mel频标上线性分布的三角窗滤波器(本文采用24个三角窗滤波器)对信号的功率谱滤波,每一个三角窗滤波器覆盖的范围都近似于人耳的一个临界带宽,以此来模拟人耳的掩蔽效应。然后对三角窗滤波器组的输出求取对数,可以得到近似于同态变换的结果。最后去除各维信号之间的相关性,将信号映射到低维空间。 梅尔倒谱系数的计算差分参数的计算采用下面的公式:

       7、模式匹配

       本语音识别系统的模式匹配算法采用动态时间弯折(Dynamic Time Warping,DTW)算法,该算法基于动态规划的思想,解决了发音长短不一的模板匹配问题。DTW是语音识别中出现较早,较为经典的一种算法。与HMM算法相比而言,DTW算法具有计算量小,识别效率高的特点。模式匹配的过程其实就是根据一定的规则,计算输入矢量特征与库存模式之间的相似度,判断出输入语音的语意信息。本文中,失真测度采用下式所示的欧式距离:

       其中,l=1,2,…M;i=1,2,…I;k=1,2,…K.是待测矢量之间的距离,是第i个码本的第l个码字矢量的第k个分量。I为说话者的数量,M为码本的大小,K为参数矢量的总维数。由上式得出该语音相对于该命令词的最短距离,然后取最短距离最小的命令词作为该段语音的首先识别结果。结合MATLAB程序,得到数字1-10的匹配距离矩阵:

       图3即为针对数字1-10的待测模板和模板库模板匹配距离的现实,由该距离矩阵,我们可以很清楚的看到,左上角到右下角的对角线上的距离匹配值在该值所在的行和列都是最小的。即距离最短的命令词为识别结果。

       8、结语

       该论文阐述了基于DTW的语音识别系统在MATLAB上实现的基本过程,在实验室录音情况下,该识别系统的识别率可以达到百分之九十以上,效果良好。

2 部分代码

function f=enframe(x,win,inc)nx=length(x(:));            % 取数据长度nwin=length(win);           % 取窗长if (nwin == 1)              % 判断窗长是否为1,若为1,即表示没有设窗函数   len = win;               % 是,帧长=winelse   len = nwin;              % 否,帧长=窗长endif (nargin < 3)             % 如果只有两个参数,设帧inc=帧长   inc = len;endnf = fix((nx-len+inc)/inc); % 计算帧数f=zeros(nf,len);            % 初始化indf= inc*(0:(nf-1)).';     % 设置每帧在x中的位移量位置inds = (1:len);             % 每帧数据对应1:lenf(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:));   % 对数据分帧if (nwin > 1)               % 若参数中包括窗函数,把每帧乘以窗函数    w = win(:)';            % 把win转成行数据    f = f .* w(ones(nf,1),:);  % 乘窗函数end

3 仿真结果

image.gif编辑

image.gif编辑

4 参考文献

[1]吴晓平, 崔光照, 路康. 基于DTW算法的语音识别系统实现[J]. 信息化研究, 2004(07):17-19.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

image.gif编辑

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
4天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
1天前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
27 15
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
26天前
|
存储 监控 算法
内网监控系统之 Go 语言布隆过滤器算法深度剖析
在数字化时代,内网监控系统对企业和组织的信息安全至关重要。布隆过滤器(Bloom Filter)作为一种高效的数据结构,能够快速判断元素是否存在于集合中,适用于内网监控中的恶意IP和违规域名筛选。本文介绍其原理、优势及Go语言实现,提升系统性能与响应速度,保障信息安全。
29 5
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
2月前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
52 7
|
2月前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
56 6
【AI系统】QNNPack 算法

热门文章

最新文章