样本融合原理及实践(上)

简介: 样本融合原理及实践(上)

前言


本文从数据流的角度详细介绍样本融合的实现原理


场景


image.png


弊端

用户隐私数据放在第三方存在泄漏的风险

接下来咱聊聊如何多方安全隐私计算



整体流程图


微信图片_20220430205927.png


数据交互过程


以上图为依据 用实际数据来验证

guest等待host发送密钥

image.png

image.png

image.png

image.png



相关文章
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
7月前
|
编解码 算法 计算机视觉
YOLO特征融合的原理是怎样的?
YOLO特征融合的原理是怎样的?
|
5月前
|
监控 算法 自动驾驶
目标检测算法:从理论到实践的深度探索
【7月更文第18天】目标检测,作为计算机视觉领域的核心任务之一,旨在识别图像或视频中特定对象的位置及其类别。这一技术在自动驾驶、视频监控、医疗影像分析等多个领域发挥着至关重要的作用。本文将深入浅出地介绍目标检测的基本概念、主流算法,并通过一个实际的代码示例,带您领略YOLOv5这一高效目标检测模型的魅力。
855 11
|
7月前
|
机器学习/深度学习
YOLOv8改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
YOLOv8改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
605 0
|
5月前
|
测试技术 计算机视觉 网络架构
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
|
6月前
|
机器学习/深度学习 算法 数据可视化
决策树算法:从原理到实践的深度解析
决策树算法:从原理到实践的深度解析
174 0
|
7月前
|
计算机视觉
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
174 0
|
7月前
|
机器学习/深度学习
YOLOv5改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
YOLOv5改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
220 0
|
机器学习/深度学习 自然语言处理 资源调度
机器学习实战系列[一]:工业蒸汽量预测(最新版本下篇)含特征优化模型融合等
在进行归回模型训练涉及主流ML模型:决策树、随机森林,lightgbm等;在模型验证方面:讲解了相关评估指标以及交叉验证等;同时用lgb对特征进行优化;最后进行基于stacking方式模型融合。
|
机器学习/深度学习 编解码 自然语言处理
简单有效 | 详细解读Interflow用注意力机制将特征更好的融合(文末获取论文)
简单有效 | 详细解读Interflow用注意力机制将特征更好的融合(文末获取论文)
282 0