【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升

简介: 【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240622111125905

摘要

特征上采样是许多现代卷积网络架构中的关键操作,例如特征金字塔。其设计对于密集预测任务(如目标检测和语义/实例分割)至关重要。在这项工作中,我们提出了内容感知特征重组(CARAFE),这是一种通用、轻量且高效的操作符,以实现这一目标。CARAFE 具有以下几个吸引人的特性:(1)大视野。与之前的工作(例如双线性插值)仅利用子像素邻域不同,CARAFE 可以在大的感受野内聚合上下文信息。(2)内容感知处理。与使用固定卷积核处理所有样本(例如反卷积)不同,CARAFE 允许特定实例的内容感知处理,能够即时生成自适应卷积核。(3)轻量且计算快速。CARAFE 引入的计算开销很小,可以轻松集成到现代网络架构中。我们在标准基准测试中进行了全面评估,涵盖了目标检测、实例/语义分割和图像修复等任务。CARAFE 在所有任务中都显示出一致且显著的提升(分别为 1.2% AP、1.3% AP、1.8% mIoU、1.1dB),且计算开销可以忽略不计。它有望成为未来研究的强大构建模块。代码和模型可在 https://github.com/open-mmlab/mmdetection 获取。

文章链接

论文地址:论文地址

代码地址:代码地址

复现代码参考代码地址1

复现代码参考代码地址2

基本原理

CARAFE(Content-Aware ReAssembly of FEatures) 是具备下面这些特性的上采样算子。

  1. Large receptive field(大感受野):可以更好地利用周围的信息。
  2. Content-aware(内容感知):上采样核应与特征图的语义信息相关,基于输入内容进行上采样。
  3. Lightweight(轻量化):不能引入过多的参数和计算量。

CARAFE 分为两个主要模块:上采样核预测模块和特征重组模块。假设上采样倍率为 $r$,给定一个形状为 $C \times H \times W$ 的输入特征图,我们首先通过上采样核预测模块预测上采样核,然后通过特征重组模块完成上采样,得到形状为 $C \times rH \times rW$ 的输出特征图。

上采样核预测模块

  1. 特征图通道压缩
    对于形状为 $C \times H \times W$ 的输入特征图,首先用一个 $1 \times 1$ 卷积将其通道数压缩到 $C // 4$,以减少后续步骤的计算量。

  2. 内容编码及上采样核预测
    假设上采样核尺寸为 $k \times k$(上采样核越大,感受野和计算量越大)。如果希望对输出特征图的每个位置使用不同的上采样核,需要预测的上采样核形状为 $k^2 \times H \times W$。对于压缩后的输入特征图,通过一个 $3 \times 3$ 卷积层来预测上采样核,输入通道数为 $C // 4$,输出通道数为 $k^2$,然后将通道维在空间维展开,得到形状为 $k^2 \times H \times W$ 的上采样核。

  3. 上采样核归一化
    对第二步中得到的上采样核进行 softmax 归一化,使得卷积核权重和为 1。

特征重组模块

对于输出特征图中的每个位置,将其映射回输入特征图,取出以之为中心的 $k \times k$ 区域,与预测出的该点的上采样核作点积,得到输出值。同一位置的不同通道共享同一个上采样核。

image-20240622182712957

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139886624

相关文章
|
5月前
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
782 1
|
5月前
|
机器学习/深度学习 编解码 文件存储
YOLOv5改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv5改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
1244 1
|
5月前
|
机器学习/深度学习 人工智能 算法
人工智能中数据组合采样、特征层、算法层的讲解(图文详解)
人工智能中数据组合采样、特征层、算法层的讲解(图文详解)
142 0
|
3月前
|
计算机视觉 网络架构
【YOLOv10改进-特征融合】YOLO-MS MSBlock : 分层特征融合策略
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
|
5月前
|
编解码 算法 计算机视觉
YOLO特征融合的原理是怎样的?
YOLO特征融合的原理是怎样的?
|
3月前
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
3月前
|
机器学习/深度学习 移动开发 自然语言处理
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
|
3月前
|
机器学习/深度学习 大数据 计算机视觉
【YOLOv8改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点
YOLOv8专栏探讨了深度学习中信息瓶颈问题,提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),改善轻量级模型的信息利用率。GELAN在MS COCO数据集上表现优越,且PGI适用于不同规模的模型,甚至能超越预训练SOTA。[论文](https://arxiv.org/pdf/2402.13616)和[代码](https://github.com/WongKinYiu/yolov9)已开源。核心组件RepNCSPELAN4整合了RepNCSP块和卷积。更多详情及配置参见相关链接。
|
5月前
|
机器学习/深度学习 编解码 自然语言处理
YOLOv8改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)
YOLOv8改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)
399 2
|
5月前
|
机器学习/深度学习
YOLOv8改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
YOLOv8改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
518 0