解决训练难题,1000层的Transformer来了,训练代码很快公开(一)

简介: 解决训练难题,1000层的Transformer来了,训练代码很快公开(一)

1000 层的 Transformer,深得吓人。


昨日出炉的论文《DeepNet: Scaling Transformers to 1,000 Layers》在研究社区引起了热议,作者来自微软亚洲研究院。


该研究直接把 Transformer 深度提升到 1000 层!


下面让我们看下这篇研究说了什么。


近年来,大规模 Transformer 模型出现了这样一种趋势:随着模型参数从数百万增加至数十亿甚至数万亿,性能相应地实现了显著提升。大规模模型在一系列任务上都取得了 SOTA 性能,并在小样本和零样本学习设置下展现出了令人瞩目的能力。如下图 1 所示,尽管参数量已经很大了,但 Transformer 模型的深度(depth)却受到了训练不稳定的限制。


f735bff742ad8917e2a25ea5e37173b6.png


Nguyen 和 Salazar (2019) 发现,基于 post-norm 连接(Post-LN),pre-norm 残差连接(Pre-LN)能够提升 Transformer 的稳定性。但是,Pre-LN 在底层的梯度往往大于顶层,因而导致与 Post-LN 相比性能下降。为了缓解这一问题,研究人员一直努力通过更好的初始化或更好的架构来改进深度 Transformer 的优化。这些方法可以使多达数百层的 Transformer 模型实现稳定化,然而以往的方法没有能够成功地扩展至 1000 层。


微软亚研在一篇新论文《DeepNet: Scaling Transformers to 1,000 Layers》中终于将 Transformer 的深度扩展到了 1000 层。


d6cd682eaec00a3ad7b39ddae04bbb67.png


论文地址:https://arxiv.org/pdf/2203.00555.pdf


研究者的目标是提升 Transformer 模型的训练稳定性,并将模型深度进行数量级的扩展。为此,他们研究了不稳定优化的原因,并且发现爆炸式模型更新是造成不稳定的罪魁祸首。基于这些观察,研究者在残差连接处引入了一个新的归一化函数 —— DEEPNORM,它在将模型更新限制为常数时具有理论上的合理性。


这一方法简单但高效,只需要改变几行代码即可。最终,该方法提升了 Transformer 模型的稳定性,并实现了将模型深度扩展到了 1000 多层。


此外,实验结果表明,DEEPNORM 能够将 Post-LN 的良好性能和 Pre-LN 的稳定训练高效结合起来。研究者提出的方法可以成为 Transformers 的首选替代方案,不仅适用于极其深(多于 1000 层)的模型,也适用于现有大规模模型。


值得指出的是,在大规模多语言机器翻译基准上,文中 32 亿参数量的 200 层模型(DeepNet)比 120 亿参数量的 48 层 SOTA 模型(即 Facebook AI 的 M2M 模型)实现了 5 BLEU 值提升。


有知乎网友疑问:就实现效果来说,1000 层是否有必要?论文作者之一董力(Li Dong)表示,1000 层更多地是为了探究上限,实际跑的过程中并非一定要上千层。此外,训练代码很快就会公开。


9507b1a03ba34547d5a6dba49985dcee.png


DEEPNORM 方法


如下图 2 所示,使用 PostLN 实现基于 Transformer 的方法很简单。与 Post-LN 相比,DEEPNORM 在执行层归一化之前 up-scale 了残差连接。


d52c650b795439ddb4c1672dda5cb612.png


图 2:(a) DEEPNORM 的伪代码,例如可以用其他标准初始化代替 Xavier 初始化 (Glorot and Bengio, 2010) ,其中 α 是一个常数。(b) 不同架构的 DEEPNORM 参数(N 层编码器,M 层解码器)。


此外,该研究还在初始化期间 down-scale 了参数。值得注意的是,该研究只扩展了前馈网络的权重,以及注意力层的值投影和输出投影。此外,残差连接和初始化的规模取决于图 2 中不同的架构。


深度 Transformer 的不稳定性


该研究分析了深度 Transformer 不稳定的原因。


首先,研究者观察发现:更好的初始化方法可以让 Transformer 的训练更稳定。之前的工作(Zhang et al., 2019a; Huang et al., 2020; Xu et al., 2021)也证实了这一点。


因此,研究者分析了有无适当初始化的 Post-LN 的训练过程。通过更好的初始化,在执行 Xavier 初始化后通过


a5f6760470de0ea8b999885304b045a4.png


down-scale 第 l 层的权重。例如,第 l 层 FFN 的输出投影715e85d0193c75be528c00df1ada42c9.png被初始化为


7f2b3ce1069b1770590ced9fd2de63d1.png


其中 d’是输入和输出维度的平均值。研究者将此模型命名为 Post-LN-init。请注意,与之前的工作(Zhang et al., 2019a)不同, Post-LN-init 是缩窄了较低层的扩展而不是较高层。研究者相信这种方法有助于将梯度扩展的影响与模型更新区分开来。此外,Post-LN-init 与 Post-LN 具有相同的架构,从而消除了架构的影响。


该研究在 IWSLT-14 De-En 机器翻译数据集上训练了 18L-18L Post-LN 和 18L-18L Post-LN-init。图 3 可视化了它们的梯度和验证损失曲线。如图 3 © 所示,Post-LN-init 收敛,而 Post-LN 没有。Post-LN-init 在最后几层中具有更大的梯度范数,尽管其权重已按比例缩小。此外,研究者可视化最后一个解码器层的梯度范数,模型深度从 6L-6L 到 24L-24L。


下图 3 显示,无论模型深度如何,最后一层 Post-LN-init 的梯度范数仍远大于 Post-LN 的梯度范数。得出的结论是,深层梯度爆炸不应该是 Post-LN 不稳定的根本原因,而模型更新的扩展往往可以解释这一点。


77aca03608032e08dadbbeb4cc1a35ef.png


然后研究者证明 Post-LN 的不稳定性来自一系列问题,包括梯度消失以及太大的模型更新。如图 4 (a) 所示,他们首先可视化模型更新的范数 ||ΔF|| 在训练的早期阶段:


d53a57648880e195e9f5feb72516b655.png


其中 x 和 θ_i 分别代表输入和第 i 次更新后的模型参数。Post-LN 在训练一开始就有爆炸式的更新,然后很快就几乎没有更新了。这表明该模型已陷入虚假的局部最优。


warm-up 和更好的初始化都有助于缓解这个问题,使模型能够顺利更新。当更新爆炸时,LN 的输入会变大(见图 4 (b) 和图 4 ©)。根据 Xiong 等人 (2020) 的理论分析,通过 LN 的梯度大小与其输入的大小成反比:


001c2095eae96e134c36116d6d8fe951.png


相比于没有 warm-up 或正确初始化的情况,图 4 (b) 和图 4 © 表明 ||x|| 的明显大于95b106fb2278b87e56ad235c787c4cbb.png。这解释了 Post-LN 训练中出现的梯度消失问题(见图 4 (d))。


最重要的是,不稳定性始于训练开始时的大型模型更新。它使模型陷入糟糕的局部最优状态,这反过来又增加了每个 LN 的输入量。随着训练的继续,通过 LN 的梯度变得越来越小,从而导致严重的梯度消失,使得难以摆脱局部最优,并进一步破坏了优化的稳定性。相反,Post-LN-init 的更新相对较小,对 LN 的输入是稳定的。这减轻了梯度消失的问题,使优化更加稳定。


相关文章
|
11天前
|
人工智能 数据安全/隐私保护
深度揭秘CoT!普林斯顿耶鲁发布最新报告:大模型既有记忆推理、也有概率推理
普林斯顿大学和耶鲁大学研究人员发布报告,探讨链式思维(CoT)提示对大型语言模型(LLM)推理能力的影响。研究通过移位密码任务,揭示了三个关键因素:任务输出概率、预训练阶段的隐性学习及中间操作数量(噪声推理)。实验使用GPT-4、Claude 3和Llama 3.1模型,发现CoT提示可显著提升模型准确性,但也存在局限性。论文地址:https://arxiv.org/abs/2407.01687。
74 29
|
30天前
|
机器学习/深度学习 人工智能 计算机视觉
字节豆包大模型团队突破残差连接局限!预训练收敛最快加速80%
字节跳动豆包大模型团队提出“超连接”创新方法,突破残差连接局限,引入可学习的深度和宽度连接,动态调整网络层间连接强度。该方法在大型语言模型预训练中实现最快收敛速度,加速80%,并在图像生成、分类等任务中表现出色,显著提升准确率和稳定性。论文链接:https://arxiv.org/pdf/2409.19606
62 5
|
2月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
45 2
|
8月前
|
存储 机器学习/深度学习 人工智能
论文介绍:InfLLM——揭示大型语言模型在无需训练的情况下处理极长序列的内在能力
【5月更文挑战第18天】InfLLM是一种新方法,无需额外训练即可增强大型语言模型处理极长序列的能力。通过使用记忆单元存储长序列的远距离上下文,InfLLM能更准确地捕捉长距离依赖,提高对长文本理解。实验表明,InfLLM使预训练在短序列上的模型在处理极长序列时表现媲美甚至超过专门训练的模型。尽管有挑战,如动态上下文分割和记忆单元效率,InfLLM为长序列处理提供了有效且未经训练的解决方案。论文链接:https://arxiv.org/abs/2402.04617
207 3
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
让大模型不再巨无霸,这是一份最新的大模型参数高效微调综述
【5月更文挑战第12天】最新综述探讨了大模型参数高效微调,旨在减少计算成本、增强泛化能力和灵活性。方法包括Additive、Selective、Reparameterized和Hybrid PEFT,已应用于NLP、CV和多模态学习。尽管取得进展,仍需解决泛化、效率和可解释性问题。未来研究将关注多任务学习、强化学习和神经架构搜索。论文链接:https://arxiv.org/pdf/2403.14608.pdf
414 2
|
7月前
|
机器学习/深度学习 自然语言处理 物联网
ICML 2024:脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了
【6月更文挑战第4天】在ICML 2024上,研究团队提出了傅立叶变换微调(FourierFT),一种减少训练参数的新方法,替代了依赖LoRA的微调。FourierFT通过学习权重变化矩阵的稀疏频谱系数,实现了LFMs的高效微调。在多项任务上,FourierFT展示出与LoRA相当或更优的性能,参数量却大幅减少,如在LLaMA2-7B模型上,仅需0.064M参数,对比LoRA的33.5M。广泛实验验证了其在NLP和CV任务上的效果,但未来还需探索其适用性和泛化能力。论文链接:[arxiv.org/abs/2405.03003](https://arxiv.org/abs/2405.03003)
146 0
|
8月前
|
数据采集
【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
【5月更文挑战第5天】【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
|
8月前
|
机器学习/深度学习
大模型开发: 解释批量归一化以及它在训练深度网络中的好处。
批量归一化(BN)是2015年提出的加速深度学习训练的技术,旨在解决内部协变量偏移、梯度消失/爆炸等问题。BN通过在每层神经网络的小批量数据上计算均值和方差,进行标准化处理,并添加可学习的γ和β参数,保持网络表达能力。这样能加速训练,降低超参数敏感性,对抗过拟合,简化初始化。BN通过稳定中间层输入分布,提升了模型训练效率和性能。
205 3
|
8月前
|
计算机视觉
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
模型落地必备 | 南开大学提出CrossKD蒸馏方法,同时兼顾特征和预测级别的信息
178 0
|
人工智能 缓存 并行计算
终极「揭秘」:GPT-4模型架构、训练成本、数据集信息都被扒出来了
终极「揭秘」:GPT-4模型架构、训练成本、数据集信息都被扒出来了
998 0