☆打卡算法☆LeetCode 81、搜索旋转排序数组 II 算法解析

简介: “给定一个整数数组,整数数组会在某一个位置进行旋转,然后给定一个整数,判断整数是否在数组中。”

一、题目


1、算法题目

“给定一个整数数组,整数数组会在某一个位置进行旋转,然后给定一个整数,判断整数是否在数组中。”

题目链接:

来源:力扣(LeetCode)

链接:81. 搜索旋转排序数组 II - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转 ,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4] 。

给你 旋转后 的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false 。

示例 1:
输入: nums = [2,5,6,0,0,1,2], target = 0
输出: true
复制代码
示例 2:
输入: nums = [2,5,6,0,0,1,2], target = 3
输出: false
复制代码


二、解题


1、思路分析

这道题是搜索旋转后的数组中,是否存在给定的值,这道题跟33题搜索旋转排序数组的类型很相似,是在33题的基础上修改而来,33题使用了二分查找方法。

那么对于这道题也可以使用二分查找的方法,这个首先需要确定左右取件是否是有序的。

首次二分时,无法判断左右区间是否是有序的,那么就可以将当前二分区间的左边界加1,右边界减1,然后继续在新区建上二分查找。


2、代码实现

代码参考:

class Solution {
    public boolean search(int[] nums, int target) {
        int n = nums.length;
        if (n == 0) {
            return false;
        }
        if (n == 1) {
            return nums[0] == target;
        }
        int l = 0, r = n - 1;
        while (l <= r) {
            int mid = (l + r) / 2;
            if (nums[mid] == target) {
                return true;
            }
            if (nums[l] == nums[mid] && nums[mid] == nums[r]) {
                ++l;
                --r;
            } else if (nums[l] <= nums[mid]) {
                if (nums[l] <= target && target < nums[mid]) {
                    r = mid - 1;
                } else {
                    l = mid + 1;
                }
            } else {
                if (nums[mid] < target && target <= nums[n - 1]) {
                    l = mid + 1;
                } else {
                    r = mid - 1;
                }
            }
        }
        return false;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n是数组的长度。

空间复杂度: O(1)

只需要一个常量级的变量空间。


三、总结

这道题和33题相比,不同的地方在于有重复数字。

使用二分查找:

  • 处理左右边界,进行二分查找
  • 分别处理前后部分



相关文章
|
22天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
310 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
25天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鱼鹰优化算法NSOOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鱼鹰优化算法NSOOA求解无人机三维路径规划研究(Matlab代码实现)
|
28天前
|
供应链 算法 Java
【柔性作业车间调度问题FJSP】基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP研究(Matlab代码实现)
【柔性作业车间调度问题FJSP】基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 运维 算法
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
181 0
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
273 1
|
1月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
178 1
贪心算法:部分背包问题深度解析
|
1月前
|
存储 算法 搜索推荐
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
专攻软考高频算法,深度解析二分查找、堆排序、快速排序核心技巧,对比九大排序算法,配套动画与真题,7天掌握45%分值模块。
84 1
软考算法破壁战:从二分查找到堆排序,九大排序核心速通指南
|
1月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用

热门文章

最新文章

推荐镜像

更多
  • DNS